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ABSTRACT

The issue of model validation is critical in the formulation and interpretation of

mathematical programming models, yet this problem is largely ignored by contemporary

modeling languages and the systems they support. This research advances modeling

languages for mathematical programming by providing a formalism and defining a

language for specifying a dimensional complement, called "typing," to the algebraic

representation of models. Typing is a formal specification used to determine automatically

whether the algebraic model is well-formed in the sense that its objective function and

constraints are composed of homogeneous components and that operations performed

using indices are meaningful. A provision is made for the definition of dimensional axioms

that can be applied automatically to resolve dimensional differences. The addition of formal

typing to mathematical programming models also yields a powerful abstraction mechanism

for integrated modeling.
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I. INTRODUCTION

During the past 30 years, parallel developments in optimization technology and

computer technology have greatly increased the size and complexity of solvable

mathematical programming models. As the size and complexity of solvable models

increase, more general and effective support tools are needed to enable formulation efforts

to keep pace with optimization.

Historically, considerable attention has been focused on one aspect of modeling

support: the translation of a modeler's algebraic formulation into the computational data

structures required by a solution algorithm. This task involves the substitution of real and

integer numbers for symbolic parameters in objective functions and constraints. Typically,

the result of this procedure is a compact representation of a very sparse matrix whose rows

and columns number in the hundreds or thousands and whose non-zero elements appear in

intricate patterns. The size and complexity of such a structure makes manual translation

impractical.

Recognition of the need for a specialized language that supports modeler's algebraic

notation has led to the development of modeling languages (ML) for mathematical

programming [e.g., Bisschop and Meeraus <1982>, Burger <1982>, Clemence <1984>,

Fourer, Gay and Kernighan <1987>, Geoffrion <1988>, and Lucas and Mitra <1988>].

Modeling languages are declarative programming languages designed to emulate the

algebraic notation used by modelers to express mathematical programming models. They

provide constructs for representing parameters, variables, functions and constraints.

Modeling languages designed for formulating large-scale problems also allow these

constructs to be defined over sets with multiple indices. Because there is nearly a one-to-

one relationship between a modeler's personal notation and the features of the language,
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creation of a modeling language program or schema1 is more a task of transcription than

translation for the modeler.

Given a schema and data for the schema, modeling language systems produce a file

that is ready for solution by an optimization system. Each particular data set, together with V

its corresponding schema, forms an instance of the model that we will call a "problem."

When the schema and the data are stored in separate files, the model user, who need not be

the same person as the modeler, has the power to formulate many different problems by

combining the schema with different data files. In situations where the model changes as

much as, or more than the data, schema and data can be combined in a single file. Whether

the schema and data are separate or intermixed, it is useful to view the execution of a

problem by a system as two processes:

(1) an algebraic validation that determines if objects are correctly defined and if sets,
indices, functions, and constraints are composed with valid operations; and

(2) a data validation that determines if all the data are present and in the form required
by the model.

In contemporary modeling language systems, the algebraic validation and data

validation are relatively weak. Most detectable errors are typographical and are easily

corrected. The real substance of the validation is contained in the name and the explanatory

description associated with each numerically valued symbol in the model. These

descriptions are vital because they enable the purely numerical results obtained from

solving the algebraic representation to be interpreted in real-world terms.

1The word "schema" is used by Geoffrion <1988> to describe models composed as
Structured Models. We prefer this term to "modeling language program" because
formulation in a modeling language is not the same as creating a matrix generator in a
computer language like FORTRAN.
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To ensure that the algebraic form of his model correctly captures his intention, the

modeler is obliged to perform a "dimensional" check of each algebraic function and

constraint he specifies. This is done by replacing each numerically valued symbol by its

explanatory description and then applying two kinds of dimensional calculus. One kind is

the calculus of measurement units: a unit analysis must be performed to verify that pure

numbers that are added, subtracted or compared have the same scale of reference. The

other calculus is similar in intent to the first: it verifies that pure numbers that are added,

subtracted or compared either represent the same real world phenomena or can be made the

same by applying some rule or abstraction. For example, suppose "X" represents the

weight of apples measured in pounds and "Y" represents the weight of oranges

measured in pounds. If the expression "X + Y' were to appear in a constraint, the modeler

might resolve the difference in the descriptions of "X" and "Y"' by assigning their sum the

description "weight of fruit measured in pounds."

Since modeling languages have been primarily designed for accessing pure numbers

from data files and storing them in the data structures required for computation, few

facilities have been provided for describing what the symbols mean. Documentation of the

meaning of a variable or a parameter is limited, in most languages, to the use of meaningful

names and in-line commentary that is not processed. For example, GAMS [Bisschop and

Meeraus <1982>1 and LEXICON [Clemence <1984>] require an interpretation as part of

the declaration of a symbol, but the style and content of that description is still a matter of

personal taste. Because these descriptions are informal, verification of the modeler's

intention must still be done as a separate, manual exercise.

In this thesis we develop a formalism, called typing, for automating dimensional

checking. Typing describes the meaning of parameters, variables, functions and

constraints, and the numerical characteristics of indices. In our paradigm, the modeler
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formulates an algebraic model in a modeling language and provides an explanatory

description in a type language for each of the aforementioned constructs in the schema. The

computer then processes this extended schema and automatically verifies that both

representations are in agreement before it creates computational data structures.

Typing makes models more secure. When the modeler's intention is expressed as an

executable complement to the model schema, the two representations are tightly coupled. A

change in one that is inconsistent with the other can be automatically detected and br. ight

to the attention of the modeler or model user. Not only does typing provide a facility for

defining and enforcing dimensional consistency (a feature totally lacking in existing

modeling languages for mathematical programming), it also yields a powerful abstraction

mechanism for creating templates of models and for integrated modeling.

The specification of constructs and notation for what have previously been informal

ideas must be done carefully. An emphasis has been placed in our research on the design of

a type calculus that is general enough to encompass all existing algebraic modeling

languages for mathematical programming. In our examples, typing is added to a "generic"

modeling language, referred to as "EML" (Elementary Modeling Language) in the sequel,

that contains the principal features of several systems [ Bisschop and Meeraus <1982>,

Clemence <1984>, Fourer <1983>, and Fourer, Gay and Kernighan <1987>]. EML

supports multiple indexing, allows data to be endogenous or exogenous to the schema and

permits parameters to be defined as functions. A meta-language specification of EML is

provided as Appendix A.

Our research is presented in six chapters. The first three chapters develop the typing

formalism and define a notation and grammar for its implementation. Chapter II describes

the fundamentals of typing modeling language parameters, variables, constraints, functions

and index sets. Chapter III describes how typing would be added to a modeling language
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system for linear programming. Chapter IV presents the syntax and semantics of a

language kernel based on this paradigm. The language kernel is then extended in

Chapter V with four more features: polymorphic types, type indexing, a structure to

facilitate type coercions and a mechanism for standardizing and encapsulating types for

particular applications. Chapter VI discusses the utility of typing to integrated modeling.

Chapter VII presents our research conclusions.
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II. FUNDAMENTALS OF TYPING

We begin this chapter by reviewing the use of data types in programming languages.

Typing of numerically-valued objects in modeling languages will then be introduced

incrementally. Units of measurement will be discussed first, followed by dimensional

characteristics (classical concerns of dimensional analysis, e.g., Bridgeman <1935> ) and

then the idea of concepts. Typing of index sets in modeling languages will be discussed in

Section C. The chapter concludes with an example of a typed modeling language schema.

A. DATA TYPES IN PROGRAMMING LANGUAGES

Programmers make errors. Although the developers of programming methodologies

seek to prevent errors at the source, the nature of the task is such that programming errors

will not be eliminated entirely. It is therefore useful to assist the programmer in detecting,

identifying and correcting them. Data types can be effective tools in this endeavor.

A data type consists of a set of values and a collection of operations defined over that

set. The values of a data type establish a convention on how the contents of an address in

computer memory should be interpreted by the host machine. Specification of allowable

operations on these values forestalls certain programming errors by preventing meaningless

operations from being performed. Thus, data types increase the security of computer

programming by preventing violations of the type structure of a language from going

undetected.

A distinguishing feature of languages for mathematical modeling is the provision of

specialized data types such as variables, parameters, functions and equations in addition to

the integer, real and logical types needed for scientific computation. These specialized

types can also be indexed over sets of finite, discrete elements.
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Data types in contemporary modeling languages are not secure. While sets may only

be manipulated with other sets, operations on set elements which are order-dependent can

be applied to any set, whether its elements are ordered or unordered. Similarly, variables,

parameters and functions are of equal status and may be added, subtracted, multiplied,

divided and compared with impunity. In the sequel, we will develop criteria for

guaranteeing the security of mathematical operations on these constructs.

B. STARTING WITH BASICS: UNITS OF MEASUREMENT

Numbers by themselves have arbitrary meaning. Even labelled numbers are still

ambiguous, albeit that labels can suggest what a number may represent. For example,

"steel:= 6" is plausibly more meaningful than "x := 6". To be meaningful, a number

must be associated with a unit of measurement. A unit of measurement is a standard of

comparison used to ascertain the extent of something. If we say "x" is measured in tons,

we know implicitly that any number assigned to "x" is a denominate number: it represents

the number of times that 1 ton occurs in the thing that "x" represents. Furthermore, "x"

should not be added, subtracted, or compared with "y" unless both "x" and "y" are

expressed in tons.

The responsibility for the security of arithmetic computations in programming

languages is traditionally split between people and computers. Since computer arithmetic

emulates the mathematics of the real number line, programming languages disassociate

numerical values from units of measurement. Numbers without dimensions can be

compared and combined as elements of the real number system without risk. The

programmer is solely responsible for performing a complementary computation in terms of

a measurement system to verify the units of his arithmetic expressions. Modeling

languages have perpetuated this division of labor as the direct descendants of general

programming languages.
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The task of specifying units of measurement for each symbolic numerical value in a

program and manually performing unit analysis is tedious and error-prone. These

characteristics and the fact that unit computation is performed according to fixed rules

makes unit analysis an obvious candidate for automation. Thus, one characteristic of a

modeling language data type should be unit of measurement.

The idea that numerical data objects should always be associated with units of

measurement has been attributed to Hoare <1973>. With this information, the language

compiler could check the validity of proposed operations beyond mere numerical

feasibility. For example, a value determined by dividing a value in "miles" by a value in

"gallons" should only be assigned to a data object measured in "miles/gallon". The

inclusion of a unit of measurement along with a numerical value in a data type has the

benefits of increasing the reliability and readability of the calculations as well as increasing

the security of the program itself. Proposals for languages with units of measurement have

been made by Gehani <1977>, Karr and Loveman <1977>, and House <1983>. A

working implementation of Hoare's idea has been actualized only recently as an extension

to the PASCAL programming language by Dreiheller, Moerschbacker and Mohr <1986>.

However, as we demonstrate in the following example, units alone are insufficient to make

modeling language arithmetic calculations secure.

At a superficial level, extending the type structure of a modeling language to include

units of measurement is simple. Begin by declaring a unit for each variable and parameter

in the ML representation. Then, program a rule for each of the arithmetic operations

performed on denominate numbers. For example,

Division results In the ratio of the units of measure of the two
operands being inherited by the quotient. Identical units In
numerator and denominator of a unit description cancel one
another.
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C. CONTINUING: DIMENSIONAL CHARACTERISTICS

A rule-driven approach based on units of measurement alone would be naive.

Consider an excerpt from the hypothetical formulation of a capital-budgeting investment

problem as a mathematical program (Figure 2.1).

Objective Function:

Max I cjxj + I Pl (mln(O, bi - aiixi)) +

where:

J = a set of Investment alternatives

I an Investment year

cj a a present discounted value in year 1 of an
Income stream of investment J ($)

bi  available budget In year I to Invest ($)

PI = the penalty parameter for violating the available budget In year I

xj= binary variable Indicating whether or not alternative j Is selected

aij the capital outlay required by Investment j In year I

Figure 2.1 ModelExcerpt

Should PI be considered to be a dimensional or a dimensionless parameter? One way

to determine the answer would be to form the ratio of the units of "cjxj" and "bl - Z ali .'

I

Since both terms are expressed in dollars, we might conclude that PI must be

dimensionless: no unit conversion is necessary to make the two terms conformable. The

subtlety missed by a rule based only on units is that present worth expressed in dollars, and
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a lump sum in a future time period expressed in dollars are not the same. Hence, Pl must

have the units

present worth (dollars)
violated budget (dollars) in year i

Unit of measurement alone is insufficient to convey information accurately to

someone else. Scientific observation requires two kinds of descriptions: a quantitative

description so that the observed phenomenon can be distinguished from other phenomena;

and a unit of measurement to distinguish quantitatively similar occurrences of different

magnitude.

A quantitative description is a description based upon the conventions of a

dimensional system. A dimensional system is a set of fundamental quantities together with

a set of rules for determining all other quantities in the system from this fundamental

quantity set. In physics and engineering, standards for quantitative description are

established. Quantitative information about physical systems or events is described in terms

of products of fundamental quantities, such as force, length or time, raised to appropriate

powers. For example, the quantity "area" can be described as "length2 ." Table 2.1

provides descriptions of certain engineering quantities in terms of force (F), length (L) and

time (1).

Although force, length, and time are regarded as the fundamental dimensions for

engineering problems, many other combinations could be considered fundamental. In

physics, mass (M) is considered more fundamental than force. Force, mass, length and

time are interrelated through Newton's second law of motion,

force = mass * acceleration.

Stated in dimensional form, F = ML/T2 .
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TABLE 2.1 ENGINEERING QUANTITIES AND MEASURES

Quantity FLT Basis English Metric

Force F lb nwt

Mass FT2/L Ib-sec2 /ft kq = nwt sec2/m

Lngth L ft m

Area L2  ft2  m2

Volume L3  ft3  m3

Velocity L/T ft/sec m/sec

Acceleration L/T2  ft/sec 2  m/sec2

Pressure F/L2  lb/ft2  nwt/m2

Energy FL ft Ib Ijoule = nwt. m

This table lists the terms and identities used by engineers as an example of a
standard for dimensional description.

In general, any quantity may be expressed as the product of fundamental quantities

raised to appropriate powers. The unit of measurement employed in a scientific observation

is a standard within some measurement system. A measurement system is created by

establishing a unit of measurement for each fundamental quantity of a dimensional system

and determining all other units of measurement from adopted dimensional conventions.

English and metric standard units for selected engineering quantities are provided in

Table 2.1.

Inherent in our linear system of measurement and idea of scientific observation is the

postulate that numerical values of the same magnitude are not equal unless they describe the

same quantity and are derived from identical units.2 Consequently, the operations of

2 Dimensional analysis, a technique employed to obtain information about the form of
a solution to a physical problem, is based upon the principle of dimensional homogeneity
of physical equations. That is, every term in a complete and general physical equation must
have the same dimension, expressed in fundamental quantities. (e.g., Bridgeman <1935>).
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addition and subtraction, and the use of the relational operators (s,=,a) are only

meaningful when their operands can be reduced to a common quantitative and measurement

standard.

D. ATTRIBUTING DIMENSIONAL CHARACTERISTICS

TO ENTITIES AND EVENTS: CONCEPTS

Numerically-valued objects are included in models to represent a quantifiable

behavior of an entity or the occurrence/non-occurrence of an event considered important in

the modeled problem. We call this entity/event a concept and consider it to be an essential

part of any modeling description. A concept is an abstraction intended to summarize the

common characteristics of the particulars it subsumes. Each concept has an associated set

of measurable quantities. For example, the concept "rectangle" has the quantities "length",

"width", and "height." An important distinction between concepts and quantities is that

concepts do not have exponents. For example, "width" of "rectangle" multiplied by itself

would be "width2 " of "rectangle," not "width2 " of "rectangle2 ."

E. A GLOSSARY FOR TYPING NUMERICAL OBJECTS

We now define a data type for numerically valued symbols in ML schemas. A

numerical type is a data type that has two components, a dimensional description and a unit

description. The dimensional description is an executable description of the phenomena

represented by a modeler-named object or an arithmetic expression of model-named

objects. It has two parts: a quantity and a concept possessing that quantity. Each concept

has an associated set of measurable quantities. Our choice of the term "quantity" is intended

to be analogous to our earlier use of the same word when describing conventions for

scientific observation. Weight, value, cardinality, and duration are examples of quantities.

A unit description is composed of a unit of measurement and an optional scale factor.

A unit of measurement is the standard of comparison to be applied when arithmetic,
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assignment and comparison operations are performed between two numerically typed

operands. It can be composed of a product form or ratio of product forms of fundamental

units defined in the ML schema by the modeler. For example, if "meter" and "kilogram"

are declared as fundamental units, then "meter2 " and "kilogram / meter3 " are allowable

units of measurement. A scale factor is an unsigned multiplier that amplifies or diminishes

a unit of measure. For example, "100 meters 2 " and "1/10 kilograms / meter 3" are unit

descriptions that include scale factors.

Each symbol or combination of symbols and arithmetic operators capable of having a

numerical value is assigned a numerical type. Type assignment is performed by the

modeler for data objects (parameters, variables, functions and constraints) he names. He

does this by writing a type declaration in a type language for each named data object in the

ML schema. The lexical and syntactical details of the type language are deferred until

Chapter 4. Types of arithmetic expressions composed of these named objects and

numerical literals (e.g., 2, 1.23, .10E-7) are determined by a type analyzer. The type

analyzer is a computer program that parses the type language, interprets its expressions,

and converts them to a lower-level form for type verification and data verification. Type

verification is the process of determining the consistency of arithmetic expressions

according to the rules of composition, or calculus, of the type language. Data verification

is the process of determining whether the explicitly-typed data submitted as values for an

ML schema's typed names match the numerical types expected in that context. The syntax

and semantics of a numerical type language are presented in Chapter 4.

F. TYPING INDEX USAGE

Symbolic indexing enhances the conciseness, precision and generality of algebraic

modeling notation. It provides an ability to group collections of symbols and an ability to

13



manipulate those collections using elementary set operations and logical operators. For

example, statements like

(;,U X

make it possible to include or exclude particular objects or subsets of objects in functionals

and constraints.

The advantages of indexed notation derive in part from an assumption of

homogeneity. When a modeler chooses to group objects into a set, say "X," and

distinguish between them by an index, say "j," an assertion is made that some uniform

conditions hold for each set element that can be abstracted in the form of a typical element,

say "Xj." If all Xj are homogeneous with respect to their characteristics (except, perhaps,

their numerical value), then the whole set of X-objects can be described in a single

modeling language definition. If the Xj are not uniform, and the distinctions are important,

the modeler has two alternatives: (1) partition the Xj elements into named, homogeneous

subsets of objects; or (2) provide individual definitions for each element of the set.

The rest of the advantages of indexed notation result from the numerical

characteristics that modelers ascribe to the indices they use. Although modelers tend to blur

the distinction, there are three kinds of simple indices (as opposed to compound index sets

whose elements are tuples of simple indices) used in modelers' personal notations.

Nominal indices represent domains of unordered labels. When a nominal index is

appended to the label of a set of data objects, it is similar to distinguishing the members of a

family by their first names. Since nominal indices are unordered, the only relationships

defined between nominal indices are "equal" and "not equal."

The second kind of simple index is the ordinal index. Ordinal indices represent

domains of simply ordered labels. In addition to the "equal" and "not equal" relationships,
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ordinal index labels can be compared using the "greater than" and "less than" relations to

other index labels within their domains.

The third type of simple index is the ordinal+ index. Sets assigned ordinal+ indices

are simply ordered. In addition, each element of an ordinal+ index set acquires the integer

value associated with its ordinal position, counting from one to the cardinality of the set.

Hence, ordinal+ indices inherit not only the relations and operators used with nominal and

ordinal indices, but certain integer arithmetic operations as well.

We believe the distinctions between the three kinds of simple indices are significant

enough to justify index typing in modeling languages. The use of ordinal indices is already

considered important in programming languages. Enumerated types, ordered collection of

identifiers, are included in PASCAL (e.g., Jensen and Wirth (1983)) to circumvent the

abuse of integer data types in index usage. For example, in FORTRAN IV (e.g.,

McCracken <1965>) an integer in the closed interval [1,7] can be used to represent a day of

the week. This same coded object can then be raised to a rational power later in the

program without violating the syntax or semantics of FORTRAN IV.

Typing indices in modeling language increases model security by regulating the ways

in which indices can be used as selectors in iterated arithmetic operations and as operands

in arithmetic computation. This classification also reminds the modeler/model user of the

model's sensitivity to index set modifications. If, for example, an index is declared to be

"nominal", the user is assured that the associated index set can be enlarged, reduced or

permuted without affecting the properties of the model. Permutation of the elements of an

"ordinal+" index set, however, incurs a risk of changing the intended outcome of iterated

arithmetic operations that depend on the original order. Consider an example where a

modeler wishes to sum the diagonal elements of an n x n dimension table which is indexed

by two "ordinal+" sets. The row index of the table is "." The column index of the table is
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"J." The index set "SET" provides an (ij) address for each cell in table "X." Let

"PositlonO" be an operator that converts the ordinal position of an index set element into

an integer. A modeling language statement that accomplishes this task is

SUM (IQ) {SET) [ POSITION(i) EQ POSITION(J) J(X(ii)).

If the elements of either index set are rearranged, the outcome of this operation will not be

what the modeler intended.

We sometimes find it convenient in modeling to create compound index sets

composed of k-tuples of simple indices. For example, tuples of nominal index values like

(RENO.CHICAGO) may be defined in a transportation model to designate the beginning and

ending points of a route. An example of convolved index types is (DALLAS, JULY_87)

where "DALLAS" is a nominal index representing a location and "JULY_87" is an element of

an ordinal+ index set which represents the months in a three-year period. When a simple

index becomes a component in a compound index it maintains the properties and operators

associated with its index type. The syntax and semantics of an index type language are

presented in Chapter 4.

G. EXAMPLE

Figure 2.2 displays a linear programming model written in EML and a computer

language designed for typing. Typing descriptions are enclosed in double angle brackets,

e.g.,<< nominal >>,

to aid explanation now, and implementation later. This notation makes it easier for the

reader and a computer implementation of these notations to discern typing constructs from

ML constructs. In addition, keeping ML statements separate from typing statements

increases the portability of typed ML schemas. If the brackets are replaced by the symbols

used in an ML to enclose in-line comments, typed ML schemas can be ignored on modeling

systems that do not support typing.
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Two kinds of statements occur in almost all computer languages. Declaratives are

used to declare facts that are needed before a program can be executed, such as the

symbolic names of areas of memory and the initial contents of memory areas. Imperatives

are commands that are executed during the running of a program, such as assignment and

computational operations. Four kinds of type language declaratives are used in

Figure 2.2. The statements indented beneath the headings "QUANTITIES" and

"CONCEPTS" establish what we call a numerical type context for the model. A quantity

statement declares the existence of a particular quantity and associates it with a pre-defined

system of measurement. For example, the statement "WEIGHT: LBS" asserts that a quantity

called WEIGHT is an atom in the model's type structure and that the modeler intends WEIGHT

to be measured in pounds. A concept statement attributes a set of quantities to a particular

concept. The statement "@BUTTER[WEIGHT]" declares the existence of a concept called

@BUTTER that has WEIGHT as a measurable quantity. Quantities are declared prior to

concepts in accordance with a well-known programming language design principle (e.g.,

Wiener and Sincovec <1982>) which we will refer to as Define Before Use. For our

purposes, "define before use" means

All objects named by the programmer should be declared
prior to their use In other declarative and imperative statements.

Adherence to this principle facilitates model understanding by others by requiring the

modeler to present his formulation in a non-circuitous way. It also simplifies the design of

a language compiler by allowing a schema to be processed in one pass (e.g., Aho and

Ullman <1977>).
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<<QUANTITIES
WEIGHT : LBS;
COST : US$;
DURATION: DAY; >

<CONCEPTS
@BUTTER (WEIGHT];
@OBJECTIVE [COST];
@TIME (DURATION];

SETS
DAIRIES I; << nominal
WAREHOUSES J; <<nominal
PATHS(ID := ( CROSS ({DAIRIES} , (WAREHOUSESI) Y,

VARIABLES

SHIPMENT(ij) (PATHS); <<WEIGHT of @BUTTER / DURATION of @TIME
# [100] LBS /DAY # >

POSITIVE: SHIPMENT(i,j);

PARAMETERS
SCOST(ij) {PATHS}; «<COST of @OBJECTIVE / (WEIGHT of @BUTTER

/ DURATION of @TIME) # US.$ /([(100] LBS / DAY) # >

SUPPLY({DAIRIES}; «<WEIGHT of @BUTTER / DURATION of @TIME
# [100] LBS IDAY #>

DEMANDU) {WAREHOUSES}; «<WEIGHT of @BUTTER / DURATION of @TIME
# [100] LBS IDAY # >

FUNCTIONS
OBJECTIVE := SUM (i,j) {PATHS} (SCOST(IJ)*SHIPMENT(Ij));

«<COST of @OBJECTIVE # US_$ # >

CONSTRAI NTS
OUTBOUND@I {DAIRIES} := SUM (j) {PATHS} (SHIPMENT(,j)) =L= SUPPLY(i);

«<WEIGHT of @BUTTER / DURATION of @TIME # [100] LBS / DAY # >

INBOUND(J) {WAREHOUSES} := SUM 0) {WAREHOUSES} (SHIPMENT(ij)) =E= DEMANDO);
«<WEIGHT of @BUITTER / DURATION of @TIME # [100] LBS / DAY # >

SOLVE
MIN OBJECTIVE; SUBJECT TO ALL;

REPORT
SHIPMENT(,J) (PATHS}; <<WEIGHT of @BUTTER / DURATION of @TIME

# [100] LBS / DAY #N

Figure 2.2 EML Schema With Typing
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The concept, quantity and unit primitives declared in the type context are used to

define the third kind of declarative, the numerical type statement. Numerical type

statements are used to declare types for each parameter, variable, function and constraint

named by the modeler in the EML schema. The EML variable SHIPMENT(i,j) has the type

statement

WEIGHT of @BUTTER / DURATION of @TIME # [1001 LBS / DAY .

The first part of the statement is called the dimensional description. It describes the

phenomena that FLOW(i,j) represents in the EML schema. The second part of the type

statement, enclosed in #..#, is called the unit description. It associates the numerical value

of SHIPMENT(I,J) with a unit of measurement. In this example, the unit LBS is prefaced by a

scale factor of "100" to indicate that SHIPMENT(i,j) is measured in units of 100 pounds per

day.

The last kind of declarative statement used in Figure 4.1 is the index type statement.

Each index set in the EML schema that introduces an index, such as DAIRIES I, has one.

The index type statement restricts permissible transformations on index set elements, such

as lag or lead operations.

A language for typing has no imperatives of its own; instead, it uses the arithmetic

statements of an ML. When a type language is executed, the type of each parameter,

variable, function and index is substituted for its symbolic name in functions and

constraints. These expressions are then evaluated according to the semantics of the type

language. Operations defined on indices, such as "equal to" (e.g., ( i EQ j), are

imperatives for the evaluation of index types.
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III. PRINCIPLES: ADDING TYPING TO A MODELING LANGUAGE

A type language and its type analyzer are the complement of a modeling language and

its modeling language translator. The type language portion of a model provides a formal

specification that can be used to determine whether modeling language algebraic

expressions are well-formed in a more restricted sense than in the arithmetic of real or

integer numbers. The purpose of this chapter is to describe how these two processes

would work together in a modeling language for linear programming.

A. HOW MODELING LANGUAGE SYSTEMS FOR LINEAR

PROGRAMMING WORK

Figure 3.1 is a diagram of the process of transforming a linear program, expressed in

modeling language, into optimal solution results. 3 The process has five stages. During

syntactic analysis, a modeling language translator performs two functions: it parses each

modeling language statement and ensures its consistency with statements that precede it;

and, it constructs a symbol table. This symbol table is used to access the character strings

of index values and the numerical values of parameters, variables and functions.

The second stage of the process is instantiation. At this point, the generic algebraic

model is transformed into a concrete model instance by specifying the elements of index

sets and by assigning numerical values to model parameters. After this data is extracted

from the model text file, or from a separate source, a modeling language translator

performs checks for completeness. Every index set must have at least one element and

every parameter must have a value.

3This is the method employed by Clemence <1984> in the "Lexicon" ML. Individual
MLs may vary in some details.
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Once the data requirements of the model are satisfied, the third stage of the process,

generation, can begin. During generation, sets of algebraic functions and constraints are

translated in a four-step procedure into vectors of real numbers. Translation is done in

order of appearance in the model schema. Lexicographical order is followed within sets.

The first step in the generation procedure is called reduction. During reduction, each

function or constraint is reduced to an algebraic expression composed of variables,

parameters, symbolic numerical literals and arithmetic operators. This is done by

repeatedly replacing each occurrence of a function name by its algebraic definition and by

replacing iterated operators by their primitive forms.

After reduction is complete, the next generation step is encoding. The algebraic infix

notation used by the modeler to specify functions and constraints, i.e.,

<operand> <operator> <operand>, is converted to an encoded postfix notation, i.e.,

<operand> <operand> <operator>, for manipulation on a push-down data structure (e.g.,

Aho, Hopcroft and Ullman <1974>).

The last step in the generation stage, evaluation, has two responsibilities. It extracts

numerical values from the symbol table and it evaluates the postfix coding to produce either

a scalar, an objective function vector or a row of the constraint matrix.

The last two stages in Figure 3.1 are optimization and report generation.

Optimization includes the tasks of invoking the solution algorithm, storing optimized

results, and computing auxiliary functions that require those results. Report generation is

self-explanatory.

B. HOW A TYPE LANGUAGE SYSTEM WOULD WORK

Determination of whether modeling language functions and constraints are consistent

in terms of the typing system is a four-stage process (Figure 3.2). These stages are

syntactic analysis, type instantiation, data verification, and a counterpart to generation,
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called type verification. The functions performed during syntactic analysis by a type

analyzer are the same as those performed by a modeling language translator: parsing,

syntactic checking, and symbol table construction. An important difference between type

language syntactic analysis and modeling language syntactic analysis is that a type analyzer

must be able to parse and manipulate modeling language as well as its own language. This

is necessary in order to associate types with modeling language identifiers and to perform

necessary functions in the type verification stage.

The second stage in the process, type instantiation, assigns a numerical type or an

index type to each operand in the model schema. This information may be included within

the schema or specified as model data.

The third stage in the process is data verification. When the numerical data that

specifies a model instance is provided by an external source, there is a risk that these

numbers will not mean what the modeler expected they would mean. If this data is typed, a

type analyzer can compare the description provided by the source with the modeler's

original specification. Data values that do not meet specification can be brought to the

attention of a modeling language translator and the modeler.

When each index and each parameter, function, and variable in the model has an

assigned type, the type verification stage can be performed. Like matrix generation, it is a

four-stage process: it reduces modeling language functions and constraints to simpler,

equivalent forms composed of only variables, parameters, numerical literals and arithmetic

operators; it converts these equivalent forms to an encoded postfix notation; and it evaluates

the encoded form using a push-down data structure.

Although matrix generation and type verification recognize the same arithmetic

operator symbols and obey the same rules of operator precedence when processing

modeling language functions and constraints, neither the semantics of those operations nor
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their results are the same. Matrix generation manipulates numbers. There is a one-to-many

mapping between each modeling language function and constraint in a schema, and the

functions and constraints of a problem instance. The number of functions and constraints

generated from the schema for each instance is determined by the problem data. The output

of the matrix generation stage is a vector of coefficients intended for a solver. Type

evaluation manipulates symbols. Each modeling language function and constraint is

evaluated only once. The output of the type verification stage, for each function and

constraint, is an indicator intended for a modeling language translator and the model user.

The indicator signifies whether a particular function or constraint is "safe" to generate as a

scalar or a vector of numerical constants. The additional work needed to do this kind of

checking is independent of problem size.

C. HOW A MODELING LANGUAGE SYSTEM AND A TYPE

LANGUAGE SYSTEM WOULD WORK TOGETHER

Figure 3.3 is a diagram that depicts the synchronization of the two processes. Notice

that the syntactic analysis performed by a type analyzer occurs after that of a modeling

language translator. This sequencing simplifies the job of a type analyzer considerably

since it can assume that all modeling language statements it processes are free of errors in

syntax. Data verification has been scheduled after data instantiation arbitrarily. It would

also be possible to reverse this ordering and use data verification as a data preprocessor.

The type verification stage of the typing process occurs after the model instance is specified

but before the requisite computational data is generated. This is done to interdict the

production of type-inconsistent functions and constraints.

If the purview of a type language is limited to that of a "go - no go" gauge for

exogenous model data and for matrix generation, a type analyzer and a modeling language

translator may operate semi-autonomously. The only couplings between the two systems
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are their sequencing, the ability of a type analyzer to recognize the modeling language

grammar, and a channel that a type analyzer can use to inform a modeling language

translator of its deductions.

Extension of a type language's range of control to include the ability to alter numerical

values necessitates a tighter coupling between its type analyzer and a modeling language

translator. If a type analyzer assumes the responsibility of converting the units of incoming

data to a system of measurement specified by the modeler, it must be able to reproduce the

numerical input format read by the modeling language translator. Alternately, it must be

able to access numerical values through the symbol table of a modeling language translator

and alter them in situ. This knowledge of the inner workings of a modeling language

translator is essential to perform the symmetric extension: the ability to change the units of

optimized results for reports.

The most powerful extension of a type language's numerical responsibility would be

for it to autonomously perform unit conversions within modeling language functions and

constraints. This enhancement is more difficult to implement than the tailoring of input or

output because the effect of each transformation must be local in context, not global. If, for

example, the units of a parameter are changed from "pounds" to "grams" to resolve a

conflict of units in a sub-expression of a constraint, that does not imply that this change is

necessary elsewhere in the model. Hence, globally changing the units of a numerical object

by altering its assigned numerical value, as would be done for input or output, is

prohibited.

The ability to perform unit transformations on a case-by-case basis necessitates the

tightest coupling between a type analyzer and a modeling language translator. A type

analyzer must have the ability to name conversion factors and to place them, and their

numerical values, in a modeling language translator's symbol table and attendant data
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structures. It must also have the ability to create revised forms of constraints and functions

which include these conversion factors that the modeling language translator can process to

generate scalars, objective function vectors and matrix rows. One way to accomplish this

second task would be to employ a type analyzer's type verification stage as a preprocessor

for a modeling language translator's generation stage. The linkage between the two

systems would be the encoded postfix form required for arithmetic evaluation on a push-

down data structure. This procedure is explained in detail in Chapter 4.
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IV. A TYPE LANGUAGE

Each formal language has its own jargon and its own set of peculiar symbols and

constructs; our type language is no exception. The purpose of this chapter is to introduce

our terminology and symbology. The grammar of our numerical type language is formally

presented in a programming meta-language in Section A. Numerical type semantics are

specified in Section B. Grammar and semantics for index types are presented in Section C.

A. NUMERICAL TYPE SYNTACTIC STRUCTURE

In this section we present formal definitions for the lexical and syntactic conventions

of the numerical type language. Programming languages are described in terms of

grammars (e.g., Aho and Ullman <1977>). A grammar is a finite set of syntactic

categories. Syntactic categories are defined recursively in terms of each other and primitive

symbols called terminals. The terminals we use are elements of the ASCII 4 character set

(any standard computer-readable scheme would do equally well). The rules which relate

syntactic categories to each other are called productions.

The grammar of the numerical type language grammar is described in the sequel using

a meta-language known as extended Backus-Naur form (BNF) (e.g., MacLennan

<1983>). BNF notation represents syntactic categories by words or phrases in angle

brackets such as "< digit >." The symbol "::=" is read as "is defined as." Juxtaposition of

syntactic categories means they are concatenated; spaces between symbols and syntactic

categories represent blank characters. The symbol "I" is read as "or" and is used to list

4A(merican) S(tandard) C(ode) for I(nformation) I(nterchange): a proposed standard for
defining codes for information exchange between computer equipment produced by
different manufacturers.
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alternate forms that the thing being described can take. The notation "<..>*" stands for a

sequence of zero or more occurrences of a syntactic category. If the superscript "*" is

replaced by a superscript "+" the minimal number of occurrences in the sequence is one

instead of zero. The same superscripts can be used with parentheses to stand for multiple

occurrences of the enclosed contents. Constructs contained in square brackets, "[..]", are

optional. Terminals are enclosed in double quotes. These conventions are summarized in

Table 4.1. Figure 4.1 is provided as an example of numerical type language constructs.

TABLE 4.1 EXTENDED BNF NOTATION

Symbol Interpretation

< > syntactic category

1 ]optional

( ') to be treated as a single term

_ _ _or

"__" _terminal

::=__is defined as

superscript * zero or more occurrences of

superscript + one or more occurrences of

1. Operators

The numerical type language includes the conventional arithmetic operators,

parentheses, and a special operator for mapping a quantity to a system of measurement.

The symbols chosen to represent these operators appear in Table 4.2.

2. Reserve Words

Reserve words are words that a language reserves for its own use; they cannot be

used by the programmer as labels. Figure 4.1 uses two language reserve words:
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<<QUANTITIES
WEIGHT :LBS;
COST : US$;
DURATION: DAY;

<<CONCEPTS
@BUTTER [WEIGHT];
@OBJECTIVE [COST];
@TIME [DURATION];

SETS
DAIRIES 1; <<nomina >
WAREHOUSES j; <<nominal >
PATHS(ij) := f CROSS ({DAIRIES}, {WAREHOUSES}) };

VARIABLES

SHIPMENT(ij) (PATHS%, «<WEIGHT of @BUTTER / DURATION of @TIME
# [100] LBS /DAY # >

POSITIVE: SHIPMENT(ij);

PARAMETERS
SCOST(,j) {PATHS}; «<COST of @OBJECTIVE / (WEIGHT of @BUTTER

IDURATION of @TIME) # USS /( [100] LBS /DAY) # >

SUPPLY(l) {DAIRIES}; «<WEIGHT of @BUTTER / DURATION of @TIME
# [100] LBS IDAY # >

DEMANDQ) {WAREHOUSES}; «<WEIGHT of @BUTTER / DURATION of @TIME
# [100] LBS IDAY # >

FUNCTIONS
OBJECTIVE := SUM (ij) (PATHS} (SCOST(i,j)*SHIPMENT(i,j));

«<COST of @OBJECTIVE # US_. #>

CONSTRAINTS
OUTBOUNDQi) {DAIRIES} := SUM (j) {PATHS} (SHIPMENT(i,j)) =L= SUPPLY(i);

«<WEIGHT of @BUTTER / DURATION of @TIME # [100] LBS I DAY # >

INBOUNDQ) (WAREHOUSES) := SUM 0) fWAREHOUSES} (SHIPMENT(i,j)) =E= DEMANDO);
«<WEIGHT of @BUTTER / DURATION of @TIME # [100] LBS / DAY # >

SOLVE
MIN OBJECTIVE; SUBJECT TO ALL;

REPORT
SHIPMENT(,) {PATHSY, <<WEIGHT of @BUTTER / DURATION of @TIME

# [100] LBS / DAY #N

Figure 4.1 EML Schema With Typing
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TABLE 4.2 OPERATORS

Symbol Interpretation

+ addition

subtraction

* multiplication

/ division
A exponentiatlon

parentheses
unit designator

The symbols listed in this table are primitives that will be used to define the syntax and semantics
of our type language

"QUANTITIES" and "CONCEPTS". Other reserve words are declared in the sequel as new

language features are introduced. Details on the use of QUANTITIES and CCNCEPTS are

provided later.

3. Constants and Symbolic Names

Extended BNF definitions for numerical constants are given in Figure 4.2. The

language recognizes three forms of numbers: integers, real numbers expressed in decimal

or scientific form and real numbers expressed in rational form. Whereas decimal and

scientific forms are implemented as floating point numbers, rationals have their own

implementation. They are used in the language in situations were floating point

representation could create ambiguity, such as when scale factors are compared for

equality.

Three kinds of symbolic names are used to build more complex forms: unit

labels, quantity labels and concept labels (See Figure 4.3). Concept labels are

distinguished from unit and quantity labels by their "@" character prefix.
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<digit> ::= "o"1""1 "2"I"3"I"4I"5"I "I"7" "8"I"9"

<unsigned integer> ::= <digit>+

<signed integer> ::= ['+"I"-"] <unsigned integer>
<rational>::= r+"?"-"] <unsigned integer> "/ <unsigned integer>

l<unsigned integer>
<decimal number> ::= <unsigned integer>"."<unsigned integer>
<scientific number>::= <decimal number> "E" r,-""+"] <unsigned integer>

Figure 4.2 Numerical Constants

<uppercase letter> ::= "A"I"B"j"C"I..."Z"

<special character> ::=_
<alphanumeric>::= <uppercase letter>j<digit>j<special character>
<label> ::= <uppercase letter><alphanumeric>*

<unit label>::= <label>

<quantity label>::= <label>

<concept label>::= "@"<label>

Figure 4.3 Identifiers

4. Quantity Declarations and Concept Declarations

Quantity and concept declarations establish the type context for all nume'ical types

used in a typed model schema. Each quantity statement in a quantity declaration introduces

a unique quantity label and asserts how that quantity label will be measured. Each concept

statement in a concept declaration associates quantity labels with a unique concept label.

The syntax for these constructs is given in Figure 4.4.

5. Dimensional and Unit Components

Dimensional components and unit components are intermediate constructs used to

form numerical types. Each is defined recursively. This is done to show that new

numerical types can be created dynamically when arithmetic operations are evaluated. The
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syntax for dimensional components and unit components is given in Figure 4.5. The

purpose of the universal dimensional component and universal unit component is discussed

<quantity statement> ::= <quantity label> *:" <unit label>

<quantity declaration>::= *QUANTITIES" <quantity statement>
C';' <quanty satemenr> )* ;

<concept statement> ::= <concept label> "[" <quantity label>
(.<quantity lb> )*

<concept declaration> ::= 'CONCEPTS" <concept statement>
(";" <concept statements> )*";

Figure 4.4 Concept and Quality Declarations

<quantity>::= <quantity label>
I <quantity>" "H<unsigned Integer> j<quantity>"*"<quantity>

I <quantity>"/"<quantity>l" ("<quantity>")"

<universal dimensional component>::= "@*"

<dimensional clause>::= <quantity> "of" <concept label>
J<universal dimensional component>

<dimensional component>::= <dimensional clause>
I<dimensional component>","'<dimensional component>
I<dimensional component>'/"<dimensional component>
I(<dimensional component>)

<scale factor>::= '[" <rational> 1"
<universal unit component>::= "UNITY"

<unit>::= <unit label>
<unit>"A"<unslgned integer> <unit>""<unit>I<unit>/"<unit>"("<unit>")"1

<unit clause>::= [<scale factor>] <unit>l<universal unit component>

<unit component> ::= <unit clause>
<unit component>"'<unit component>
<unit component>"'I<unt component>

'("<unit component>')"
<universal unit component>

Figure 4.5 Dimensional and Unit Components
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at length later in this chapter. Both constructs are used to create modeler-defined numerical

type and unit transformations.

6. Numerical Type Statement

BNF definition for the numerical type statement is given in Figure 4.6.

<numerical type statement> ::= <dimensional component>*#" <unit component> "#"

Figure 4.6 Numerical Type Statement

B. NUMERICAL TYPE SEMANTICS

During the first two stages of model verification, the type analyzer parses declarative

statements to establish a collection of labels for defining numerical types and index types,

and stores the types specified for modeler-named EML objects (index sets, variables,

parameters, functions and constraints). The lexical and syntactic conventions of declarative

statements were described in the previous section. During the last two stages of model

verification, the type analyzer applies a type calculus to determine whether EML arithmetic

and assignment imperative statements are well-formed. The purpose of this section is to

present the principles and rules for manipulating numerical types. We begin by describing

the semantics of numerical type arithmetic, numerical type assignment and numerical type

comparison. We conclude by discussing three data typing notions: equivalence,

conversion and coercion.

1. Arithmetic, Assignment and Relational Operations

During the execution phase, each function and constraint defined in an EML

schema is checked to determine its numerical type validity. A function or constraint is

numerically type valid if the computed numerical type of its algebraic expression is the

same as the one declared for it by the modeler.
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How does one determine the numerical type of an algebraic expression? Any

symbolic numerical value (parameter name, variable name, or function name) or numerical

literal (9, 3.14159, 0.10E-7) is an arithmetic expression by itself. In this base case,

simply replace the label by its modeler declared numerical type. Numerical types for longer

algebraic expressions are determined in a way analogous to computing a numerical result.

A numerical result is computed by replacing each symbolic numerical value by its numerical

value and then applying arithmetic operators according to their precedence. For example, in

EML, the "+" operator takes real numbers as operands and returns a real number. A

numerical type result is determined by replacing each symbolic numerical value by its

modeler-declared or previously computed type and then applying arithmetic operators

according to their EML precedence. In this context, the "+" operator, and all other

arithmetic operators, take types as operands and return types as resultants. Whereas

numerical arithmetic is well-understood, arithmetic on numerical types requires

explanation.

Numerical type arithmetic is based on three principles. First, the product or ratio

of valid types is always a valid type. Second, for the resultant of type addition or type

subtraction to be a valid type, both operands must be the same type. If this condition is not

met, the sum or difference is a distinguished type called a numerical type error. Third, the

resultant type of any arithmetic operation involving an operand of numerical type error is a

numerical type error.

In addition to the numerical type error, there is another distinguished type called

the universal type. A universal type is a numerical type with a dimensional component of

"@r" and a unit component of "UNITY." Adding or subtracting the universal type from

another valid numerical type is analogous to adding or subtracting zero from a real number.

Multiplying or dividing a valid numerical type by a universal type is analogous to
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multiplying or dividing a real number by one. In all cases, the real number and the valid

numerical type are unchanged by the operation.

Universal types originate in three ways. First, a modeler can define a symbolic

numerical value, such as a parameter, to have the universal type. Assigning universal types

to all parameters, variables and functions has the effect of disabling the type verification

mechanism: all arithmetic, assignment, and comparison operations are legal when

operands have the universal type. Second, the product of numerical type multiplication or

the quotient of numerical type division can have the universal type if the dimensional and

unit components of the operands cancel one another. The third source of universal types is

the existence of non-exponent numerical literals in the EML schema. These multipliers are

assigned the universal type by the type analyzer during execution.

Numerical type arithmetic is performed by manipulating the quantities, concept

labels, scale factors and unit labels associated with each EML operand according to

semantic rules. These rules are detailed in four tables. Each table contains an EML

grammar production for an arithmetic imperative and the rules used to determine its type.

Numerical type addition and subtraction are defined in Table 4.3. Next, numerical type

multiplication and division rules are defined in Tables 4.4 and 4.5, respectively. Finally,

numerical type exponentiation is defined in Table 4.6. The notation used in these tables is

as follows: @A, @B are concept labels; a, b are quantities with scale factors 8a, sb and

unit labels us, ub, respectively; E1 , E2 are symbolic numerical values; R is the symbolic

numerical resultant; and N is an unsigned integer.

2. Determination of Equivalence

The validity of real addition, real subtraction, assignment and comparison

operations on symbolic numerical values is decided by whether or not the operands have

the same type. The standard used to make this determination is a variant of one known in
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TABLE 4.3 TYPE ADDITON AND SUBTRACTION

NOTATION KEY FOR TABLES 4.3, 4.4, 4.5 and 4.6

Concepts @A. @B
Quantities a, b

Units Ua,Ub
Scale Factors 4-81)

Symbolic Numferical Operands E, E2
Symbolic Numerical Resultant R

Signed Inteaer N

Production Semantic Rule

R <c== El + E2 R.type::= IF El.type =a of@A sa ua#
AND E2.tpe= a of@A #sa ua#

R <== El -E2 THEN a of@A #sa ua#

ELSE IF El .type =a of @A # sa ua#
R <== -El +E2 AND E2."yp@- # UNITY #

THEN a of@A #sa ua#

ELSE numerical typ error

programming languages as structural equivalence. Under structural equivalence, two

objects are considered to have the same type if the structural description of their types is the

same. Consider this excerpt from Figure 4.1:

VARIABLE SHIPMENT(I,) {PATH); << WEIGHT of @BUTTER / DURATION of
@TIME # [1001 LBS / DAY # >

PARAMETER DEMAND(J) (WAREHOUSES); << WEIGHT of @BUTTER/
DURATION of @TIME # 11001 LBS / DAY # >>.

Do SHIPMENTID and DEMANDQj) have the same numerical type? According to the structural

equivalence rule they do since both declarations are constructed from the same numerical

type context primitives, using the same operators (I, "),in the same sequence.
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TABLE 4.4 TYPE MULTIPLICATION

Production Semantic Rule

R<= El*E2 R.Myp::= IF Ej.tp= a ofCA #sa ua#
AND E2.ts= b of @A # stub#

THEN abofA#a*suu#

ELSE IF El .ty = a of @A # sa ua#
AND E2.tye= b of @13# sb ub#

THEN aof @A b of @13 # a* Sb uae ub#
ELSE IF EI.Mmp = a of @A #sa ua#

AND E2."yp= @* #ULNflY#

THEN a of@A #sa ua#

ELSE nwnsfrftypeem

TABLE 4.5 TYPE DIVISION

Production Semantic Rule

R <== El/E2 R.4"p::= IF Ej.p= a of @A #sa ua#

AND E2.tys= b of@A #sb ub#
THEN a/bof@A#sa/sbualub#

ELSE IF El typ = a of @A # a ua#

AND E2."p= b of @13#sb ub#

THEN aof @A / bof @13#sa /sb uub#

ELSE IF El.typ = a of @A # sa ua#

AND E2.typs= @ #ULNflY #

THEN a of@A # a ua

ELSE nwn~ Wx any ~
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TABLE 4.6 TYPE EXPONENTIATION

Production Semantic Rule

R <== ElAE2 R.type::= IFE1.type=aof@A#saua#AND E2.type= N

THEN aANof@A#saAN uaAN#

ELSE numerical typ error

Although the structural equivalence rule is straightforward, it is counter-intuitive

when applied to numerical types derived for longer arithmetic expressions.

Multiplication, for example, is both commutative and associative in the field of real

numbers. Under structural equivalence, two product forms of strictly equivalent numerical

types would not be recognized as the same type if their operands were permuted. A

solution to this dilemma is to prescribe that user-defined types and types derived during the

evaluation of arithmetic expressions be placed in a canonical form before the structural

equivalence rule is applied.

We now illustrate the construction and manipulation of a canonical form for

numerical types through an example. Assume that the type analyzer is performing the

syntactic analysis of a typed model schema. The following labels have been introduced in

the type context and have been assigned ordinal positions within their categories:

@CONCEPTS QUANTITIES UNITS

1. @BUTTER 1. WEIGHT 1. LBS
2. @GUNS 2. DURATION 2. DAYS
3. @TIME 3. COST 3. US $
4. @OBJECTIVE 4. VOLUME 4. FEET
5. CARDINALITY 5. BOXES

Part of the type analyzer's responsibility during the Syntactic Analysis stage is to

construct canonical types for parameters, variables and functions. Suppose it encounters a

type statement for a parameter called "SCOST(ID,"
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<< COST of @OBJECTIVE / (WEIGHT of @BUTTER / DURATION of@TIME)

# US_$ ([100] LBS / DAY) # >>,

and must store it in a canonical form.

The first step in creating a canonical form is to identify the different dimensional

clauses within the type statement and the arithmetic operators which bind them together. In

this case, there are three clauses: "COST of @OBJECTIVE", "WEIGHT of @BUTTER" and

"DURATION of @TIME." The clauses are bound together by three division operators, "/".

Next, the type analyzer rewrites this complex fraction of dimensional clauses as a simple

product of clauses with exponents of "1" or "- I":

(COST of @OBJECTIVE) 1 * (DURATION of @TIME) 1* (WEIGHT of @BUTTER)- 1.

After this simplification occurs, the type analyzer creates a concept vector to store the

concepts described in each clause. A concept vector is composed of "O"s and "l"s. The

order of its elements correspond t, the ordinal position imposed by the type analyzer on

concept labels. The concept vector for SCOST(1j) is

I @BUTTER I GUNS I TIME I@OBJEC
1 0 1 1 11

Notice that @GUNS is assigned a value of zero because there is no dimensional clause with

that concept in this numerical type. If more than one dimensional clause within a type were

to contain the same concept, it would still appear only once in the concept vector.

A quantity vector is a vector of signed integers used to represent the quantity

contained in each dimensional clause of a numerical type. Each element of this vector

corresponds to the exponent a particular label would be assigned if the quantity were

expressed in product form. The order of the elements in a quantity vector is the order

determined for quantity labels by the type analyzer.
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To guarantee a unique representation, the signs of quantity vector elements are

related to the sign of the exponent of their dimensional clause. If the dimensional clause

has a negative exponent, the signs of its quality vector exponents are reversed. Thus, a

dimensional clause like "( A1 *B- 1 of @C )-1" would be considered equivalent to

"(AI*B1 of @C)1." The basis for this design decision is that concepts are existential: we

have no, notion of raising existential things to powers ( length of @HOUSE * length of

@HOUSE is length2 of @HOUSE, not length2 of @HOUSE 2 ).

The quantity vectors for the dimensional clauses of"SCOST(ij)" are the rows of

the matrix given below.

WEIGHT VOLUME COST DURATION CARDINALITY
@BUTTER -1 0 0 0 0
l@TIME 0 0 0 1 0
@OBJECTIVE 0 0 1 0 0

A one-to-one relationship exists between a non-zero element in a numerical type's concept

vector and a quantity vector. If two or more dimensional clauses in a type were to contain

the same concept, their quantity vectors would be summed together to form a single vector.

In the event that a quantity vector becomes a zero vector, it is eliminated from the canonical

form and its associated concept vector element is given the value "0." This is equivalent to

manual "canceling" of terms.

The last step in creating a canonical type is to represent the unit component. This

involves reduction of complex fractions of unit clauses into two simpler representations: a

units vector and a scale factor doublet. A units vector is constructed in the same fashion as

a quantity vector. Its entries are signed integer exponents, sequenced in the order assigned

to unit labels by the type analyzer. The scale factor doublet is a pair of integers that

represent a rational number. It is formed by computing the product of unit clause scale
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factors (the reciprocal of a unit scale factor is used if the unit clause appears in the

denominator of unit component fraction) expressed as a pair of signed integers.

Our decision to specify scale factors as rational numbers rather than decimal

numbers (Figure 4.5) was made to facilitate the determination of equivalence by a

computer. The dominant format for representing decimal numbers on a computer is called

the floating point number system. The details of floating point implementation vary from

machine to machine but the same basic principles apply in all cases. A floating point

representation of a decimal number is analogous to scientific notation where a decimal

number is written as a signed mantissa multiplied by a power of 10. In floating point

notation, a decimal number is stored as a signed fraction multiplied by an integer power of

a machine-dependent base, usually some power of 2. All numbers cannot be represented

exactly and some error is incurred if an attempt is made to store such a number. For

example, the decimal number .01 is not representable in a finite number of bits in bases 2,

8, 16 or 32.

Arithmetic with floating point decimal numbers is not commutative. When

floating point decimal numbers are added, subtracted, multiplied or divided, the result may

be a non-representable number. Non-representable numbers are approximated by a floating

point surrogate by a pre-determined rule. Our decision to specify scale factors as rational

numbers and to manipulate them as integer pairs preserves commutativity, enabling derived

types to be compared without inaccuracies caused by loss of precision. Although we have

specified quantities to have only integer exponents, a similar scheme could be used to allow

quantity exponents to assume rational values. The units vector and scale factor doublet for

"SCOST(i,j)" appear below.

Units Vector: I LBS I DAYS I US $ I FEET I BOXESI
1 1 0 0
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Scale factor Doublet:1 NUMERATOR I DENOMINATOR i
I 1 100

To determine whether two types expressed in canonical form are equivalent, the

type analyzer begins by comparing their concept vectors. If the concept vectors are not

identical, no further checks are necessary. If the concept vectors match, corresponding

quantity vectors are then compared for equality, followed by units vectors and scale factor

doublets. Any difference indicates that the compared types are not equivalent.

Type addition and type subtraction are performed by determining that both

operands are type equivalent and then assigning the common type to the resultant. The

multiplication or division of a valid type by another valid type is always a valid type. Thus,

type multiplication and type division, on the other hand, create new types dynamically.

We will describe how numerical types expressed in canonical form can be

manipulated to implement type multiplication first. Figures 4.7 and 4.8 depict the canonical

forms of SCOSTj) and a variable, "FLOW(,j)," respectively. The numerical type statement

of FLOW(i,j) is

<< WEIGHT of @BUTTER / DURATION of @TIME # [50] LBS / DAY >>.

For purposes of this example, assume that SCOST(,j) is the multiplicand and FLOW(ij) is its

multiplier.

The first step in multiplying one type by another is to create a concept vector for

their product. This is done by performing a logical "OR" operation between corresponding

elements of the multiplier's concept vector and the multiplicand's concept vector. Next, a

quantity vector is constructed for each non-zero entry in the product's concept vector. This

is done by summing the quantity vectors associated with corresponding entries in the

concept vectors of the multiplier and multiplicand. Once the dimensional component of the

new type has been represented, attention is turned to its unit component. The units vector
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SCOST(IJ): Quality Vectors
C
A
R

D D
U I

W V R N
E 0 A A

Concept I L C T L
G U 0 1 1

Vector H M S O T
T E T N Y

@BUTTER 1 -1 0 0 0

@GUNS 0

@TIME 1 0 0 0 1 0

@OBJECTIVE 1 0 0 1 0 0

Scale Factor Doublet Unit VectorINUMERATOR DENOMINATOR LBS DAYS US_$ FEET BOXES

1 100 .1- 1 1 0 0

Numerical Type Statement:

<<Cost of @OBJECTIVE / (WEIGHT of @BUTTER / DURATION of @TIME) # US$1

([100] LBS / DAY) #>>

Figure 4.7 Canonical Form for SCOST(ij) Quality Vector

of the product is obtained by summing the units vectors of the multiplier and multiplicand.

Finally, the scale factor doublet is computed by multiplying the numerator element

(denominator element) of the multiplicand by the numerator element (denominator element)

of the multiplier. The new doublet is then normalized by dividing each element by their

greatest common divisor. Figure 4.9 contains the canonical form for the product of

SCOSTOj) and FLOW(IJ), as well as its type language statement equivalent.

Division of one type by another is accomplished in a similar fashion. First, a

concept vector for the quotient is created in the same manner as multiplication. Next, a
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FLOW(i,J): Quality Vectors
C
A
R

D D
U I

W V R N
E 0 A A

Concept I L C T L
G U 0 I I

Vector H M S 0 T
T E T N Y

@BUTTER [ 1 0 0 0 0
@GUNS 01
@TIME 1 0 0 -1 0

@OBJECTIVE 0

Scale Factor Doublet Unit VectorINUMERATOR DENOMINATOR LBS DAYS US_$ FEET BOXES~

Numerical Type Statement:
<<(WEIGHT of @BUTTER I DURATION of @TIME) # ([50 ] LBS / DAY) # >>

Figure 4.8 Canonical Form for FLOW(ij) Quality Vector

quantity vector is created for each non-zero entry in the quotient's concept vector. Instead

of summing corresponding quantity vectors as was done in type multiplication, the

quantity vectors of the quotient are computed by subtracting the quantity vectors of the

divisor from the quantity vectors of the dividend.

The last step in constructing a canonical form for a quotient of two types is to

create a units vector and its scale factor doublet. The units vector of the quotient is

constructed by subtracting the units vector of the divisor from the units vector of the

dividend. The scale factor doublet is constructed by multiplying the numerator entry

(denominator entry) of the dividend's doublet by the denominator entry (numerator entry)
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SCOST(I,J)*FLOW(I,J): Quality Vectors

C
A
R

D D
U I

W V R N
E 0 A A

Concept I L C T L
G U 0 I 1

Vector H M S 0 T
T E T N Y

@BUTTER 0

@GUNS 0
@TIME 0

@OBJECTIVE 0 0 1 0 0

Scale Factor Doublet Unit Vector

INUMERATOR DENOMINATOR LBS DAYS US-$ FEET BOXES

1 2 OI 0E 1 0j

Numerical Type Statement: <<Cost of @OBJECTIVE # ([ 1 / 2 ] US_$) # >>

Figure 4.9 Canonical Form for SCOST(i,j)*FLOW(ij)

of the divisor's doublet. Each element of the new doublet is then normalized by their

greatest common divisor. If "SCOST(ij)*FLOW(ij)" is used as a dividend, and FLOW(i,]) is

used as its divisor, the procedure just described reproduces the canonical form of

SCOST(ij) depicted in Figure 4.7.

3. Type Conversions

Types in canonical form can be judged to be different for one or more of the

following reasons. They can contain different concepts; they attribute different quantities to

the same concept; or, they differ in their units. These kinds of errors in an algebraic

expression may be indicative of a fundamental flaw in the model. Either the offending
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expression is inconsistent with the type declarations provided by the modeler or vice versa.

Removal of this inconsistency may require that type declarations of variables and

parameters be revised; it may even require that an entire constraint or set of constraints be

reformulated.

In other cases, numerical type errors are the result of modeling omissions rather

than explicit modeling errors. The modeler fails to include a multiplicative conversion for

transforming either one type to the other or for transforming both types to a common type.

These conversions are valid when they are based upon identities which map one

measurement system into another, obey dimensional laws, or satisfy precepts in the

modeled problem. We now offer several examples of how the EML and the type language

could be used to implement type conversions.

Suppose a variable, "FLOW(i,j)," is compared to a parameter, "UP_BD(i,j)," and a

numerical type error occurs. The declarations of FLOW(i,) and UPBD(ij) are given below.

The type statements of both objects have identical dimensional components, but they differ

in their units. FLOW(ij) is measured in "LBS / DAY" while UP_BD(ij) is measured in

"TONS / WEEK."

VARIABLES FLOW(IJ) {ARC} ; << WEIGHT of @BUTTER / DURATION of
@TIME # LBS / DAY # >>

PARAMETERS UP.BD(,J) {ARC) ; <- WEIGHT of @BUTTER / DURATION
of @TIME # TONS / WEEK # >>

CONSTRAINTS CAP(IJ) (ARC) := FLOW(IJ) :Lz UP..BD(I,J);

Since "LBS" is proportional to "TONS" and "DAY" is proportional to WEEK", an EML

parameter with an appropriate type statement can be declared and used in constraint

"CAP(ij)." The new parameter, "SCALEDN," is defined below and used to transform the

type of FLOWV,J) to the type of UPBD(i,j) in CAP(ij). The choice of which object to convert

is arbitrary since the relationship between LBS / DAY and TONS / WEEK is invertible.
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PARAMETERS SCALEDN / 0.0035 /; < @* # (TONS/WEEK) /
(LBS/DAY) # >>

CONSTRAINTS CAP(I,J) {ARC) := SCALEDN * FLOW(Ij) =L. UP.BD(I,J) ;

Notice that the type statement of SCALEDN has a universal dimensional component.

Thus, when the type of SCALEDN and the type of FLOWi,J) are multiplied, the product has

the dimensional component of FLOW(Ij): "WEIGHT of @BUTTER / DURATION of @TIME".

Notice also that the numerical constant needed to transform the numerical value of

FLOW(ij),"0.0035", is included in the EML declaration of SCALEDN.

Multiplicative type conversions can also be written in the type language to resolve

dimensional differences. Consider the following model excerpt:

PARAMETERS

BASE ; << BASE-AREA of @SOLID # METER^2 # >>

OVERHEAD ; << SIDE-HEIGHT of @SOLID # METER # >>

FUNCTIONS

CAPACITY := BASE*OVERHEAD ; << RECVOLUME of @SOLID
# METER^3 # >>

In its present form, "CAPACITY" would generate a numerical type error because the

quantities declared in its type statement are different from those derived from its algebraic

definition. The intention of the modeler is clear: the volume of a solid is calculated by

multiplying its base area by its height. The following parameter documents this identity and

performs the required conversion. Notice that the unit component of this multiplier is

"UNITY". Thus, no changes are made in the unit component of the algebraic definition.

"VOLIDENTITY" is assigned a numerical value of "1.0" so that the type transformation will

not affect the numerical value of CAPACITY.
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PARAMETERS

VOL-IDENTITY / 1.0 / ; < RECVOLUME / BASEAREA
*SIDEHEIGHT of @SOLID # UNITY # >

Our next example shows that type conversions can also be used to reconcile

concept differences. Below are EML and type language declarations of two variables and

an out-of-context EML algebraic expression. We can tell from their type statements that

summing "ROME(i)" and "NAVEL(I)" will result in a numerical type error because their

quantities attribute different concepts. The intention of the modeler in formulating this

expression is to suppress the inherent differences between apples and oranges and focus,

instead, on their common attributes as fruit. This form of abstraction is called

generalization.

VARIABLES

ROME(I) {GROCERS) ; << WEIGHT of @APPLES # LBS # >>

NAVEL(I) {GROCERS) ; << WEIGHT of @ORANGES # LBS # >>

We define two parameters which will convert these different types into a common new

type. After these conversions are applied, the type of the sum will document the intention

of the modeler.

PARAMETERS

APPLES._TOFRUIT / 1.0 /; << WEIGHT of @FRUIT / WEIGHT of
@APPLES # UNITY # >>

ORANGESTOFRUIT / 1.0 /; << WEIGHT of @FRUIT / WEIGHT of
@ORANGES # UNITY # >>

In summary, we have shown through the last three examples that each of the

causes of numerical type error can be reconciled by defining type conversions. Type

conversions make a model easier for model users to understand by making concept,
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quantity and unit of measurement identities used by the modeler an explicit part of the

model.

4. Type Coercions

Each of the type transformations posed in the last section were valid because they

were based upon relationships between systems of measurement, dimensional conventions

or other identities. We now consider how this kind of information could be included

explicitly in the model and used to transform types automatically. Conversions which are

applied autonomously by the type analyzer are called coercions.

a. Units

Recall that a system of measurement is established by assigning units to the

basic quantities of a dimensional system. For example, inches may be assigned to measure

length. All other units within the measurement system are then derived according to

dimensional rules. Since area can be defined as length2 , the measure assigned to area

would be inches2 . Different systems of measurement based on the same dimensional

system support the notion of commensurability. Two things are defined to be

commensurable if one is a constant multiple of the other. Inches, feet, centimeters, and

meters are all commensurable with one another. A numerical type error due to a difference

in units can always be corrected if the units involved have this property.

Determining whether two units or two unit expressions are commensurable is

equivalent to asking whether their ratio is commensurable with unity. For example, if a

conversion from LBS/DAY to TONS/WEEK were required, we would ask whether

"(TONS/WEEK) / (LBS/DAY)" is commensurable with unity. By the identities

"1 WEEK = 7 DAYS" and "2000 LBS = 1 TON", this ratio has the value 0.0035.

Hence, the two units are commensurable and the multiplier for converting the numerical

value associated with LBS/DAY to TONS/WEEK is 0.0035.
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It is well known, for example Karr and Loveman <1978>, that given a finite

set of units, a non-redundant, finite set of identities can be written that capture all

commensurable relationships. In addition, the commensurability of arbitrary products of

these units raised to rational powers can be determined by linear algebra.

To illustrate this, we define the following set of units:

(HOUR, DAY, WEEK, LBS, TON, FOOT, ACRE).
The identities

DAY u 24 HOUR

WEEK = 7 DAY

TON z 2000 LBS

ACRE = 43560 FOOT 2

are sufficient to describe all the commensurable relationships within this set.

Next, we create a coefficient matrix for manipulating these identities. The

essential point in this procedure is to treat a unit like a multiplying variable that obeys

associativity, commutativity and this rule:

When two Identical variables are multiplied together, exponents are added.

We begin by taking the symbolic logarithm of each identity:

LN(DAY) z LN (24) + LN (HOUR)

LN (WEEK) LN(7) + LN (DAY)
LN(TON ) z LN (2000) + LN (LBS)

LN (ACRE) z LN (43560) + 2 LN (FOOT).

Next, we rewrite each equation in homogeneous form, placing terms without units at the

far right.

LN (DAY) - LN (HOUR) -LN (24) = 0

LN (WEEK)- LN ( DAY) -LN( 7) 0
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LN(TON ) - LN (LBS) - LN (2000) u 0

LN (ACRE) -2 LN (FOOT) .LN (43560). 0

The third step is to store these transformed identities in matrix form. Each identity is a

matrix row. The coefficients of each symbolic logarithm unit in an identity are written in the

given order of the unit set, in this case: HRS, DAY, WEEK, LBS, TON, FOOT, ACRE. We

will refer to the sub-matrix formed from these labeled columns as "P." The last entry in

each matrix row is the natural logarithm of a real number. We will refer to this column as

"v." The completed Ptv matrix for this example appears below.

HRS DAY WEEK LBS TON FOOT ACRE

-1 1 0 0 0 0 0 -LN (24)

0 -1 1 0 0 0 0 -LN( 7 )

0 0 0 -1 1 0 0 -LN (2000)

0 0 0 0 0 -2 1 -LN (43560)

The hypothesis that one unit is commensurable with another can be expressed

as a vector in a similar fashion. The next three lines show the transformation of the

statement "LBS/DAY is commensurable with TONS/WEEK" from algebraic form to vector

form. We will refer to (3) below as "c." Notice that c has the same dimension as a row of

P.

(1) LBS*DAY- 1 = TONS*WEEK- 1

(2) LN (LBS) - LN (DAY) - LN (TONS) + LN (WEEK) a 0
(3) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

( HRS I DAY WEEKI LBS I TON IFOOTIACRE
0 -1 1 1 -1 0 0

The procedure for determining whether two units are commensurable is stated

in Figure 4.10 in terms of linear algebra. Demonstrating that c is a member of the vector

space spanned by the rows of P is equivalent to showing that all unit exponents cancel

53



Let H be the hypothesis that the ratio of unit A to unit B is commensurable with 1;

P be an n by n matrix (derived from unit identities as described above) where n and
n are the number of unit labels and unit Identities declared in the type context of a
model, respectively;

v be an m by 1 vector;

w be a I by m vector of unknowns; and

c be an n by I vector derived to test the hypothesis.

H is true if there exists a solution, w, to the system of equations

w P z C.

If w exists, the requisite multiplier, k, for converting unit A to unit B Is given by

k a ew.V.

Figure 4.10 Procedure For Determining Commensurate Relationships

when one unit is divided by another. This is the basis for an algorithm to determine if two

units are commensurable and, if so, the value of the requisite multiplier.

A type language syntax for unit identities is given in Figure 4.11. These

statements would appear after quantity statements in the type context to conform to the

"define before use" principle.

b. Quantities

The methods we have applied to unit identities can be applied to quantity

identities with minor modification. For example, seven identities were used in the

engineering dimensional system described in Chapter 2:

(1) mass = force * time2 / length;

(2) area = length2;
(3) volume : length3 ;

(4) velocity = length / time;
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(5) acceleration = length / time2 ;

(6) pressure = force / length2 ; and,

(7) energy = force * length.

The "P" or postulate matrix for these dimensional laws appears in Table 4.7. All

commensurable relationships involving products of force, length, time, or any of the

dimensions derived from force, length and time can be determined from this matrix.

The question of quantity commensurability, translated into linear algebra

terms, is whether a vector of exponents extracted from the ratio of compared quantities is a

member of the vector space spanned by the rows of the postulate matrix. Since

dimensional laws have no pure number multipliers, no numerical conversion factor is

computed.

The entries which cannot be eliminated in c could be used in an error message

to describe the required relationship. For example, if a residual vector like the one shown

below were produced, it would indicate that an identity involving density, weight and

volume was required,

DENSITY LENGTH TIME VOLUME WEIGHT
1 0 0 1 .1

i.e., density * volume = weight. However, the indicated relationship could also involve

from 2 to n quantities and/or be a violation of other known dimensional identities.

A type language syntax for quantity identities is given in Figure 4.11. These

statements would appear after quantity statements in the type context to conform to the

"define before use" principle.

c. Concepts

Since concepts are existential, concept identities are fundamentally different

from the identities of quantities or units. Quantity and unit identities define synonyms,
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<unit identity declaration> ::= "UNIT IDENTITY"
(<unit label> "=" [<decimal number>l<scientfic number>"*'1
<unit label>[b["-"<unsigned integer>]
("*"N<unit labei>[""[-"<unsigned Integer>)*";"N )+

Example: UNIT IDENTITY
FOOT a 12.0 INCH;
KILOGRAM a NEWTON*SEC"2*METER-I;

<quantity Identity declaration> ::= *QUANTITY IDENTITY'
( <quantity label> "=" <quantity labe[""-"<unsigned integer>]
(*"<quantity label>[A""-"<unsigned Integer>]*;" )+

Example: QUANTITY IDENTITY
AREA a LENGTH"2;
DENSITY a WEIGHT*VOLUME"-1;

<concept identity declaration> ::= "CONCEPT IDENTITY"
(<concept label> "<--w "("<concept label>(",'<concept label>)* ")"%";)+

Example: CONCEPT IDENTITY
@PHYSICAL,_OBJECT -- (@BUILDING,@CAR);
@DAIRYPRODUCT <.- (@BUTTER);

Figure 4.11 Identity Declarations

TABLE 4.7 POSTULATE MATRIX FOR DIMENSIONAL LAWS

MASS AREA VOLUME VELOCITY ACCEL- PRES- ENERGY FORCE LENGTH TIME

ERA- SURE
TION

(1) -1 0 0 0 0 0 0 1 -1 2

(2) 0 -1 0 0 0 0 0 0 2 0

(3) 0 0 -1 0 0 0 0 0 3 0

(4) 0 0 0 -1 0 0 0 0 1 -1

(5) 0 0 0 0 1 0 0 0 1 -2

(6) 0 0 0 0 0 -1 0 1 -2 0

(7) 0 0 0 0 0 0 -1 1 1 0
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such as "velocity = length/time"; concept identities define generalizations, such as

"@APPLES are a kind of @FRUIT." While synonyms are mutually replaceable,

generalizations are not: apples may be fruit, but fruit are not necessarily apples. Another

difference between quantity or unit identities and concept identities is the use of arithmetic

operators. A new unit or a new quantity can be defined by applying arithmetic operators to

existing quantities or to existing units. We have no notion of composing concepts, in an

analogous way, to create new concepts.

Concept identities are written using an arrow operator, "<--", which can be

read as "is a generalization of". For example, "@A <-- @B" is read as "@A is a

generalization of @B." When multiple concepts have the same generalization, this can be

expressed by separating them by commas and enclosing them in parentheses. For

example, @A <-- (@B, @C, @D). In accordance with the "define before use" principle,

a concept label must appear in a concept declaration or as a left-hand operand in a concept

identity before it can be used as a right-hand operand in a concept identity. A BNF

description of concept identity syntax is given in Figure 4.11.

We now describe how concept identities can be organized and manipulated to

determine a concept coercion. Let each concept declared in the type context be a vertex in a

graph, G. Let each concept identity define a directed edge, from a concept's vertex to the

vertex of its generalization. Concept identities which group multiple concepts with a

common generalizing concept define multiple edges. The graph corresponding to the

concept identities given below is Figure 4.12.

CONCEPT IDENTITY @F <- @E
OC <- @1;
@E <- (@B, @D)
@B <- @A;
@D <- @A;

@1 <- @H ;
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@H No.-Of

@8C@a- Om @F

Figure 4.12 Concept Identity Graph

Suppose two types, T1 and T2, are compared to determine the legality of an

arithmetic operation and it is necessary to know whether a concept in T1 can be reconciled

with a concept in T2. All allowable coercions can be determined from the paths in G. For

example, @A generalizes to @C because there is a directed path from @A to @C in G. @B

and @D have common generalization @E because @E lies on paths from both @B and @D.

We require G to be acyclic in order to avoid circular reasoning. Given this assumption, the

complexity of doing this kind of testing is 0 IEI, where E is the set of edges in G (e.g.,

Aho, Hopcroft and Ullman <1974>).

Ambiguous situations can occur when two concepts have more than one

common generalization. For example, @E and @F are both generalizations for @B and

@D. Which one should be chosen as a concept coercion? We suggest two possible

solutions. One alternative is to let the type analyzer select one according to some fixed rule,

such as first encountered generalization. The other alternative is to report the possible

choices to the modeler in the form of an error message and let him remove the ambiguity by

redefining his identities.
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d. Application of Numerical Coercions

The numerical coercion factors needed to make an arithmetic expression well-

formed are determined by the type analyzer during type verification. They are applied by

the modeling language translator during a subsequent step. The interface between the two

systems is a revised form of the arithmetic expression that includes type analyzer-derived

constants. In this section we describe how this revision could be created in an efficient

computational form.

The order in which an arithmetic expression is evaluated depends upon the

priority of its operators, the direction of evaluation, and the use of bracketing parentheses.

A commonly used convention in arithmetic is to assign "*" and "/" equal but higher priority

than "-" and "+"; and to evaluate from left to right. The order of evaluation can be altered

by enclosing sub-expressions in parentheses. Figure 4.13 contains an unparenthesized and

a parenthesized version of the same sequence of variables and operators, written in infix

notation. By infix notation, we mean that sub-expressions have the form

<operand> <operator> <operand>

The numbers associated with the sub-expressions in Figure 4.13 indicate the order of

evaluation. Notice that evaluating an infix expression requires repeated scanning in a

left-to-right-mannei.

Although modeling languages allow modelers to write arithmetic expressions

in infix notation, they are not evaluated in this form. To avoid repeated scanning, each

infix expression is first converted to an equivalent postfix or prefix expression and then

evaluated. Prefix expressions are composed of sub-expressions which have the form

<operator> <operand> <operand>;

the sub-expressions of a postfix expression have the form

<operand> <operand> <operator>.
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a*b - c + d / • a*(b- c +( d / e))
-1m -1-

-2- -2 -
3- -- 3

Figure 4.13 Examples of Infix Expression Evaluation

Algorithms for translating from infix to postfix or from infix to prefix are

well-understood in the theory and practice of compiler writing (e.g., Tremblay and

Sorensen <1985>). They have a complexity of 0(N) where N is the number of variable,

operator and parenthesis tokens in the infix expression. In the remainder of this discussion

we will concern ourselves with postfix notation. An analogous discussion holds for prefix

notation. Examples of expressions in their infix, prefix and postfix form are given in

Table 4.8.

Postfix notation has certain virtues that simplify the evaluation of expressions.

First, postfix expressions are parenthesis free. Second, the priority of an operator is no

longer relevant. The expression may be evaluated by making a single left-to-right scan,

stacking operands, evaluating operators by removing the required number of operands

from the stack, and placing each result onto the stack. An algorithm for postfix expression

evaluation is given in Figure 4.14. A numerical example appears in Table 4.9.

The algorithm for postfix expression evaluation can be used for several

purposes. When used for numerical evaluation, operand tokens are replaced by their

numerical values and the rules of real number arithmetic are applied in the

"APPLY-OPERATOR" procedure. The intermediate results pushed on the stack are

numerical values. When used for type verification, the APPLY-OPERATOR procedure
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TABLE 4.8 EQUIVALENT EXPRESSIONS

Infix Prefix Postfix
a a a
a+b +ab ab+
a+b-c -+abc ab+c-
a+(b-c) +a-bc abc-+
a/b/c /abc ab/c/
a*b-c -*abc ab*c-
a*(b-c) *a-bc abc-*
a+b*c-d +a-*bcd abc*+d-
(a+b)*(c-d) *+ab-cd ab+cd-*

manipulates canonical types according to the rules of type arithmetic. In this case,

intermediate results pushed on the stack are the canonical types of sub-expressions. The

algorithm can also be used to reassemble the original postfix input by concatenating

operand and operator tokens together in postfix order each time the APPLYOPERATOR

procedure is called.

If a type analyzer and a modeling language translator implement postfix form

in the same way, the APPLY-OPERATOR procedure used by the former can be modified to

produce the revised postfix form needed by the latter. This is done as follows. Each time

the APPLY-OPERATOR procedure is called, two steps are performed. First, the canonical

types of the operands are manipulated according to the rules of type arithmetic. If a

numerical coercion is required (to change scale and/or change units of measurement), the

value of that multiplier is determined and assigned to a type analyzer-defined token.

Second, the postfix form of the sub-expression is reconstructed. If no numerical coercion

is required, the postfix form of the sub-expression is reassembled by concatenating

operand and operator tokens in their original postfix order. If a numerical coercion is

required, a revised postfix sub-expression is created in three steps. First, depending upon

the conversion protocol, one of the two operands tokens is concatenated to the token
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Algorithm EVALPOSTFIX.

This algorithm computes the value RSLT of an input string POSTFIX which
contains a postfix expression. It is assumed that the last character in POSTFIX is a
delimiter, ";", and that POSTFIX contains no more than n tokens.

A procedure NEXTTOKEN(POSTFIX,n) is used to extract the next TOKEN
from POSTFIX. A token is either an operand, an operator or a delimiter.

STACK(1 :n) is a one dimensional array used as a stack.

PUSH(TOKEN,STACK,n,TOP) is a procedure that places TOKEN on the
top of the stack and updates the index, TOP, which points to the top element of the
stack.

POP(STACK,n,TOP) is a function that removes the top element of the stack
and returns its value.

APPLYOPERATOR(x,STACK) is a procedure used to remove the correct
number of operands for operator x from the stack, perform the required operation, and
store the result on the stack.

BEGIN
TOP <. 0 // Initialize STACK //
LOOP:

TOKEN <- NEXT.TOKEN( POSTFIX )
CASE

: TOKEN = ;N : RSLT <- POP(STACK,n,TOP)
RETURN // evaluation complete //

:TOKEN = operand : PUSH(TOKEN,STACK,n,TOP)

ELSE: #/ x = operator //
APPLYOPERATOR(TOKEN,STACK)

END
END EVALPOSTFIX

Figure 4.14 Algorithm for Evaluating Postfix Expressions

assigned to the coercion and a multiplication token, say "*", in postfix order. For example,

suppose the two operands are sub-expressions " a b + c d * - and " x y / in the

constraint " a b + c d * x Y / =E. " and a numerical coercion "K" has been calculated to

convert the units of the left operand to those of the right operand to make the ".E="
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TABLE 4.9 Example of Postfix Expression Evaluation

Evaluation of 3 4 + 5 6 + * ; <==> (3 + 4) * (5 + 6);

Contents of Stack
Current Input Symbol Rightmost Symbol Is Action

Top of Stack
3
4 3
+ 3 4 APPLY+to3 4
5 7
6 7 5"
+ 7 5 6 APPLY+to5 6
* 7 11 APPLY* to 7 11

77 POP STACK

operation well-formed. The revised form of the left operand would be written in postfix
order as

a b+ cd*- K*

Next, the modified operand is placed in the same relative position in the original postfix

expression and concatenated to the other operand. Finally, the operator token is added as

the right-most token in the expression. In this case, the revised postfix expression is

"a b+cd*.K*xy/=E-".

The reconstructed postfix expression and its canonical type are then placed on the stack for

use in a subsequent operation. When the delimiter is encountered in the input, the

canonical type and the reassembled postfix expression are on the top of the stack. If the

type is not a numerical type error, the type analyzer forwards the reassembled (possibly

revised) postfix expression to the modeling language translator to be generated. If the

expression is stored as a tree, an analogous analysis can be done (see

Natchsheim <1987>).
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C. INDEX TYPE SYNTAX AND SEMANTICS

1. Fundamentals

Index typing formalizes the ordinal and arithmetic properties assigned to index

sets by modelers. The type of an index set determines the operators that can be legally

applied to its elements and the properties of sets which include its elements as constituent

parts. The lexical and syntactic conventions of index type declaration are simple. An

index type statement (Figure 4.15) consists of a single word (nominal, ordinal, or

ordinal+). It follows the declaration of each EML index set and is a required part of a

typed schema. Operations defined on indices and on index sets in EML are imperatives

used to evaluate index types.

E <index type statement> ::="<<""nominal" I "ordinal" I "ordinal+"">>"

Figure 4.15 Index Type Declaration

A calculus for index types depends upon the definition of an order relation between

index set elements and on the function defined to map elements of ordered index sets to the

positive integers. The order relation and index set element-to-integer function for our type

language is defined in Figure 4.16. The elements of an index set declared as ordinal or

ordinal+ are ordered in the sequence in which the individual elements first appear in the

schema. Figure 4.17 lists definitions of nominal, ordinal and ordinal+ index types.

2. Index Operators

Table 4.10 list the operators used in EML to form index expressions and index

relations (See Appendix A). These constructs are used to identify elements, to convert the

ordinal position of an element to an integer for arithmetic computation and to form
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predicates to control the EMIL "SUM" function and "SELECT" function 5 . Table 4.11 is a

notational key for the element operator semantic rules presented in Table 4.12.

Let S be an index set

x, y, z be Index set elements
< be read as "comes before"

= be read as "has the same character string as"

An order on S is a relation, denoted by < with the following properties:

(1) If x e S and y e S then one and only one of the following statements Is
true: x < y; x = y; y<x

(2) lfxy,zeS;x<yandy<zthenx<z.

(3) A subset of an ordered index set Is an ordered Index set.

Let A ::= {a1 , a2 , a3 , ..., an) be an ordered index set, where the subscript of an

element indicates Its ordinal position in A.

N ::= { 1, 2, 3, ..., n } be a subset of the positive integers.

A mapping f on the domain A to the range N Is a function with the following property:

f (a) -I

Figure 4.16 Order Relation and Element-to-Integer Function Definitions

A nominal index set is an index set with no defined order.

An ordinal index set is an index set for which an order is defined.

An ordinal+ index set is an ordinal set whose identifiers can be mapped to
positive integer values for use in arithmetic computation.

Figure 4.17 Index Type Definitions

5The "SUM" function is used in MLs as the "I" symbol is used in conventional
mathematical notation. The "SELECT" function is an operator used to extract tuples that
satisfy specified conditions from an index set.
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TABLE 4.10 INDEX OPERATORS

Name Description Precedence
++ successor 1
-- predecessor 1

POSITION() ordinal position 2
EQ equal to 3
NE not equal to 3
LT less than 3
LE less than or equal to 3
GT greater than 3
LE greater than or equal to 3

The symbols listed in Tables 4.11 and 4.12 are primitives that are used to define the syntax and
semantics of our index type language

TABLE 4.11 NOTATION KEY

Interpretation Symbol
Universal Concept @*

Quantities UNITY, BOOLEAN
Symbolic Index Operands I1, 12

Symbolic Index Set Operands S1, S2
Unsigned Integer N

Symbolic Index Expression Resultant IR

TABLE 4.12 INDEX OPERATOR TYPE LANGUAGE SEMANTICS

Operator Production Semantic Rule

++, - IR <-1 1 ++ N IR.type ::= IF I1.type = ordinal THEN ordinal
IR <- 11 - - N ELSE IF 1l.type = ordinal+ THEN ordinal+

ELSE index type error

POSITION () IR <- POSITION(1) IR.type::= IF II.type aordina+ THEN @*# UNITY #
ELSE indexty"e error

EQ,NE IR <- 11 EQ 12 IR.type ::= @* # BOOLEAN #
IR <- 11 NE 12

LT IR <- 11 LT 12 IR.type::. IF (11 .type a ordinal OR 11.type a ordinal+)
LE IR <- 11 LE 12  AND ( 11.type a ordinal OR 11.type a ordinal+)
GT IR <- 11 GT 12 THEN @* # BOOLEAN #
GE IR <- 11 GE 12  ELSE indextype error
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3. Set Operators

Table 4.13 lists the five operators used in EML to construct sets of n-tuples from

simple index sets. The "UNION', "DIFFERENCE" and "CROSS" operators provide the

traditional set operations of union, difference and Cartesian product. The "SELECTION"

and "PROJECTION" operators are special operators used to make queries of databases

organized according to the relational data model (see Ullman <1982>). Given a collection

of domains D 1 , D2 , D 3 ,..., Dn, a relation is a set of ordered n-tuples (d1 ,d2 ,d3,...,dn)

where d1 , D1, d2 e D2 , d3 e 1)3, ..., dn e Dn . A domain is simply a set of values.

In modeling languages, a subscripted numerical object (parameter, variable,

function, or equation) can be thought of as a relation. Each instance is uniquely identified

by a tuple of elements drawn from each referenced index set. For example, one instance of

the parameter set defined as

PARAMETERS
SCOST(I,J) {PATHS}; c< COST of @OBJECTIVE I (WEIGHT of @BUTTER

/ DURATION of @TIME) # US$ /( [100] LBS / DAY ) # >>

could be the tuple ( New York, San Francisco). Designers of modeling languages (i.e.,

Bisschop and Meeraus <1982>, Geoffrion <1988>) have recognized the similarity between

the use of relations by database designers to abstract information in a database and the use

TABLE 4.13 SET OPERATORS

Name and Syntax Description

UNION(S1, S2) set union

DIFFERENCE(S I , S2) set difference

CROSS(S 1 , S2) Cartesian Droduct

PROJECTION(Sl [<index tuple>]) relational algebra projection

SELECTION(Sl [<Index relation list>]) relational algebra selection
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of indexed components by modelers to abstract the structure of models. Consequently,

relational algebraic operators have been adopted to varying degree in modeling languages to

manipulate indexed model objects.

"SELECTION* is an operator used to extract a subset of n-tuples from within a

relation that satisfy a predicate. In EML, the predicate is an <index relation list> (see

Appendix A). The "PROJECTIONE operator is used to construct a subset of k-tuples, from

a relation of n-tuples, k < n. In EMI, the indices to be retained in a projection operation on

an n-dimensional index set are specified as an <index tuple>. (See Appendix A for a BNF

description of <index relation list> and <index tuple>).

When designing a type language for index sets, we are faced with a choice among

alternative rules for combining ordered index sets. One rule would be to order the elements

lexicographically. Another rule would be to concatenate the elements of one set to the other

according to a syntactic convention. For example, if A and B are ordered index sets based

upon different order relations, the ordered index set resulting from the modeling language

statement "UNION(A, B)" would list the elements of A first in sequence since A was the

first operand encountered in the statement. The rules for combining index sets adopted for

our type language are listed below.

(1) When sets derived from the same ordering relation are combined by index set
operators, the elements of the resulting set are ordered according to the ordering
relation shared by the parent index sets.

(2) When sets derived from different ordering relations are combined by index set
operators, the elements of the resulting set are unordered.
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V. LANGUAGE EXTENSIONS

A. POLYMORPHIC TYPES

The purpose of a type system in a programming language is to constrain the way

objects may interact with other objects. To this end, we have imposed a type structure on

indices and on numerically-valued symbols (constants, parameters, functions, variables

and constraints). Once type statements have been made for these primitives by the modeler,

the type analyzer is able to deduce the types of arithmetic expressions within functions and

constraints and to determine the legality of index suffixes and iterated arithmetic operations.

Programming languages in which the type of every expression can be determined

before imperative statements are executed are said to be statically typed. Static typing

facilitates early detection of typing errors and makes executing programs more efficient by

eliminating the need for run-time checks. In addition, it enforces programmer discipline

that makes programs easier to read.

The requirement that all program variables and expressions be bound to a type at

compile-time is sometimes too restrictive. In some programming languages, such as ML

(Milner <1984> as referenced in Cardelli and Weger <1986>), it is replaced by a weaker

requirement that all program expressions be guaranteed to be type consistent although the

type itself may be statically unknown. This feature enables generic procedures to be

written, such as a sorting program that works on any type with an ordering relation.

In this section we propose a weaker equivalence criterion for numerical types. This

relaxation increases the flexibility and expressive power of a type language by allowing

parameters, variables, functions and constraints to be associated with more than one type.

However, these benefits are not accrued without cost. A weaker equivalence criterion
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limits the kinds of checks that can be made before the types of these objects are completely

specified.

Certain classes of mathematical programming models, such as pure networks, can be

considered to be generic. Their identity depends upon the relationships that the variables

and technical coefficients have to one another. The real-world interpretation of these

objects is superfluous to the dimensional consistency of the constraints and objective

function as long as these dependencies are satisfied. Consider the linear programming

constraint

SUM (J) {J) ( A(lj)*X(l,I) ) -Lz B(l).

As long as the relationship

A(I,J) equals 1 B(l) unit / I X(j) unit

holds, we know by inspection that the constraint compares like things.

We propose to accommodate this sort of relationship within the type language by

allowing a modeler to declare a named numerical object to have a polymorphic type. By

"polymorphic," we mean that the object may assume one of the completely specified, or

monomorphic, types which can be constructed from the concepts, quantities and units of

measurement declared in the type context. The monomorphic type used to fix the

dimensional and unit characteristics of a data object would be made available to the type

analyzer after type evaluation but before data entry. Figure 5.1 provides examples of the

polymorphic type declaration of a linear programming constraint and objective function.

Notice that the cost coefficient, "CO)", has a type statement which is a mixture of the

grammar we defined earlier and a polymorphic type. In general, the two kinds of

numerical types can be convolved using multiplication and division. Polymorphic types

can be compounded by multiplication, division and integer exponentiation.
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VARIABLE X(j) {J) ; << TYPE XU) >>

PARAMETER B(I) {I) ; << TYPE B(I) >>

C() {J) ; << COST of @OBJECTIVE # US.$ # / TYPE XU) >>

A(I,|) {I x J} ; << TYPE B(I)/TYPE X(J) >>

FUNCTION OBJ$ := SUM Q) {J} (CU)*X) ; COST of @OBJECTIVE
# US.$ # >>

CONSTRAINT TEST(I) {I} :a SUM) {CROSS(I,J)} (A(I,J)*X(j)) -Lu B(I) ;
<< TYPE B(I) >>

Figure 5.1 Example of Polymorphic Typing

The dimensional consistency of expressions composed of objects with polymorphic

types and/or objects with mixed numerical type declarations can be determined as follows.

All monomorphic type components and polymorphic type components are subject to the

rules of the type grammar for type arithmetic and type comparison operations. The type

equivalence criterion for polymorphic types, however, is more stringent than that of

monomorphic types. Whereas differences between expressions involving monomorphic

types may be resolvable through identities declared within the type context, differences

between polymorphic types are irreconcilable. Polymorphic types are subject to a

name equivalence criterion instead of the structural equivalence criterion applied to

monomorphic types. Under name equivalence, two objects do not have the same type

unless they have the same name. For example, << TYPE Xj) >> is only equivalent to

<< TYPE XG) >>.

Although this amalgam of type checking protocols assures that all expressions

accepted as well-formed are well-formed, it cannot make an equivalent guarantee about the

expressions it rejects. For example, two EML parameters 'X" and "Y" could be initially

declared as having polymorphic types of << TYPE X >> and << TYPE Y >>, respectively. At

type evaluation the algebraic expression " X + Y" would generate an error because the name
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equivalence criterion is not satisfied. If, however, "X" and "Y" are later assigned the same

monomorphic type, say

<< CARDINALITY of @ORANGES # [100] CRATES # >>,

the summation would be correct.

If type verification cannot be completed until monomorphic types are specified we call

itpartial type verification. When the dimensional consistency of an arithmetic expression

containing polymorphic types cannot be decided, the type analyzer issues a warning

message in the body of the EML schema in the form of a type assertion. The syntax for a

type assertion is given in Figure 5.2. When polymorphic types are completely specified,

all type assertions in the model are evaluated. Assertions which evaluate as "false" indicate

the existence of numerical type errors within the formulation. These inconsistencies can be

pinpointed by executing the now completely specified model. An example of an assertion,

using "X" and "Y" would be

TYPE (X) -? TYPE ( Y).

B. CONCEPT GRAPHS

A type context, like a large program, needs to be structured to be understood by the

modeler and others who use the model. Up to this point, we have organized concepts

graphically, but have left quantities as unordered collections of labels related by identities.

< type assertion > ::= TYPE "( <numercal symbolic name>"=?=" TYPE "(" <numerical

symbolic name> IN

< "( < numerical type statement >"

Figure 5.2 Type Assertion Syntax
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In this section we consider how a taxonomy of concepts could be used to order quantities

and reason about numerical types.

A taxonomy is a system for classifying a collection of things by generalization. At

the lowest level, instances are grouped into classes in which some uniform conditions hold.

Suppose we had a collection of animals. If the collection contained several instances of

"big hopping things native to Australia," we could group them in a class called "kangaroo."

When classes have properties in common, super-classes are formed. The classes

"bandicoot," "wombat" and "kangaroo" would be instances of the class "marsupial" since

all three kinds of animals nurture their unborn young in external pouches. If these classes

are ordered from the most inclusive to the least inclusive and the resulting structure is a

tree, the result is called a taxonomic hierarchy. More complex organizations result if a class

can have more than one super-class. For example, "kangaroo" could be a sub-class of both

"marsupial" and the class "animals that live in zoos."

Nearly all knowledge representation languages in artificial intelligence and object-

oriented programming languages include some sort of taxonomic mechanism (e.g.,

SMALLTALK-80 [Goldberg and Robson <1983>]). There are two reasons for this

popularity. First, it allows the programmer to describe each class as a specialization of a

more generic class. This reduces the need to specify redundant information. It also

simplifies maintenance since information need be entered and modified in only one place.

The second advantage of taxonomic description is its conceptual parsimony. It enables a

large collection of instances to be described in terms of a smaller collection of ordered

classes.

Figure 5.3 is an example of a taxonomic hierarchy of concepts. The diagram has two

organizational axes. The first axis associates quantities to individual concepts. These

assignments further distinguish a concept from its siblings. The second organizational axis
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relates each concept to its parent. Under an inheritance protocol, each concept inherits the

quantities assigned to its generalizations. For example, "@AUTOMOBILE" inherits the

quantities "HEIGHT", "LENGTH" and "WEIGHT" from "@PHYSICAL OBJECT" and

"FUELCAP" and "PASSENGERS" from "@MOTORVEHICLE". Thus, the dimensional

description "LENGTH of @AUTOMOBILE" would be a legitimate construct in the type context

described by this graph. The root node of the tree is the universal dimensional

description,"@*." "@" is always the most general concept in a type context, and is the

"root node" in Figure 5.3.

We now show how relationships among concepts in this structure, or concept graph,

could be used to resolve differences between types. Suppose "X" and "Y" are model

variables with the dimensional components "WEIGHT of @AUTOMOBILE" and

"WEIGHT of @CARGO", respectively. From a taxonomic viewpoint, the difference

between these two descriptions is irreconcilable unless WEIGHT can be shown to be an

assigned or inherited quaritity of some common subsuming concept of @AUTOMOBILE

0,
@TIME @PHYSICALOBJECT @OBJECTIVE

DURATION HEIGHT COST

LENGTH
@MOTOR VEHICLE

FUEL CAPACITY
PASSENGERS

@CARGO
COST

@AUTOMOBILE

Figure 5.3 A Concept Graph
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and @CARGO in the concept graph. In this case, both concepts inherit the WEIGHT quantity

from @PHYSICALOBJECT. Consequently, the dimensional component determined for the

sum "X + Y" is "WEIGHT of @PHYSICALOBJECT". If @AUTOMOBILE and @CARGO did

not have a common generalization with the WEIGHT quantity, the type of "X + Y" would be

"numerical type error".

When the concept graph is a tree, deciding whether two concepts have a common

generalization is straightforward. First, navigate the directed path from one concept to the

root node, marking the visited nodes, including the origin node, along the way. Next,

navigate the directed path from the other concept to the root node. If a marked node is

encountered before the root node, this intersection shows that the concepts have a common

generalization. If no intersection occurs before the root node, the resultant is a numerical

type error.

In our taxonomic structure, the existence of a common generalization is only a

necessary condition for a concept coercion. A second condition must also be satisfied: the

quantity labels which attribute each compared concept must also be assigned or inherited

characteristics of the generalizing concept. If they are peculiar to each specialization,

concept differences cannot be reconciled.

Determining whether this second condition is met is similar to determining whether

the quantity of each concept specialization is equivalent. To determine quantity

equivalence, the quantity canonical forms associated with each concept must be compared.

This can be done, as we described in Chapter 4, by comparing the exponents of one

quantity vector for equality with the exponents of the other quantity vector. To determine

whether these same quantities are characteristics of the common concept generalization,

each quantity vector must be compared to a new data structure, called a scope vector. The

scope vector is a record of all quantity labels reachable along a directed path from a
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particular concept node within the concept graph. The elements of the vector have the same

order as the quantity array. Instead of storing exponents, each cell has an entry of "1" or

"0." A "1" indicates that a particular quantity is reachable; a "0" indicates that the quantity

in not reachable. Each quantity vector is compared to this record as follows: for each non-

zero exponent in the quantity vector, the corresponding cell in the other array must have an

entry of "1." If this condition is not satisfied, the generalized concept cannot be used as a

coercion.

The disadvantage of tree-structured taxonomies is that they sometimes force us to

duplicate information in order to maintain the acyclic structure. Figure 5.4 contains two

concept graphs. The first concept graph is a tree that contains two concepts called

"@FACTORY" and "@WAREHOUSE." The second concept graph is a revision of the tree

structure that creates a new concept that has the assigned and inherited quantities of both

@FACTORY and @WAREHOUSE, called "@FACTORYTHATISAWAREHOUSE." The

parent concept of this new concept is @FACTORY. Notice that it is necessary to restate all

ZCORY \@WAREHOUSE ZATrY @WAREHOUSE
MIN PROD INSIDE CAP 4 MIN PROD INSIDE CAP
MAXPROD OUTSIE CAP " MAXPROD OUTSIE CAP

STOR-COST STOR _COST

@FACTORYTHAT IS A WAREHOUSE
INSIDECAP
OUTSIDECAP
STORCOST

Figure 5.4 Concept Trees
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of the @WAR E H O U S E quantities (assigned and inherited) that

FACTORYTHATISA WAREHOUSE would not inherit from @FACTORY.

An alternative to this kind of duplication is to allow a concept to inherit from multiple

superiors. While this solution is intuitively appealing, it complicates the reasoning needed

to resolve concept mismatches in types. Under a multiple inheritance protocol, the concept

graph has a more general structure. It is a rooted, acyclic digraph that contains many

directed spanning trees.

When a concept graph has multiple directed spanning trees, the outcome of addition,

subtraction or comparison of numerical objects of unequal types depends upon the

spanning tree used to determine type equivalences. An upper bound on the number of

potential alternatives can be computed by the following method (Tutte <1948>):

Let D be the in-degree matrix of a rooted digraph G[V,E, where V is the set of
nodes and E is the set of directed edges.

D(ij) = the in-degree of node i if i =j; else

-k, where k is the number of edges in G from i toj.

Theorem: The number of directed spanning trees with root r of a finite
digraph with no self-loops Is given by the determinant of the m1nor
of its in-degree matrix which results from the elimination of the rth
row and rth column.

The requirement that the quantities being compared between the two objects must be

assigned or inherited traits of the common generalization provides one rule for selecting the

appropriate spanning tree. Where more than one acceptable generalization exists, it may be

necessary to enumerate all possible generalizations before an arithmetic expression is

determined to be valid.
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C. INDEXED CONCEPTS

When a single type statement is declared by the modeler for a set of symbolic

numerical values, such as the "SHIPMENT" set of variables in Figure 5.5, all elements of

the set share the same type. Although this notation for specifying types for sets of

variables, parameters and functions is concise, it creates two security loopholes in the type

system. First, siblings within the same set can be added, subtracted, or compared without

restriction. For example, the arithmetic expression

SHIPMENT('DALLAS', 'PITTSBURGH") - SHIPMENT(DETROIT", 'MEMPHIS-)

is type valid, even though this particular combination may be meaningless in the context of

a transportation model.

The second loophole is that certain relationships between symbolic numerical values,

such as parameters and variables, that are established by indexing schemes can be ignored

without violating the type system. Consider the EML declarations given for the parameter

set "SCOST" and the variable set "SHIPMENT" in Figure 5.5. Since the elements of both

SCOST and SHIPMENT are discriminated by the same indexing scheme, the modeler's

intention is that a unique SCOST parameter be associated with each member of the

SHIPMENT variable set. For example, SCOST(' DALLAS',' PITTSBURGH*) and

SHIPMENT('DALLAS', "PITTSBURGH") are intended to be used together because their

index suffixes are derived from the same set, "PATHS(ij)," and have identical values.

However, this distinction is not enforced by the type statements of SCOST and

SHIPMENT. If SCOST('DALLAS', 'PITTSBURGH') were multiplied by

SHIPMENT('DETROIT', 'MEMPHIS') in an EML function or constraint, the parallel

type evaluation would yield

<< COST of @OBJECTIVE # US_$ # >>.

ignoring the differences implied by different index labels.
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QUANTITIES
WEIGHT :LBS;
COST : US$;
DURATION: DAY;

<< CONCEPTS
@BUTTER (WEIGHT];
@OBJECTIVE [0081];
@TIME [DURATION];

SETS
DAIRIES I; <<c nominal
WAREHOUSES J; <<nominal >
PATHS,) := f CROSS ({DAIRIES}, (WAREHOUSESI) Y,

VARIABLES

SHIPMENTQJ) {PATHS}; «<WEIGHT of @BUTTER / DURATION of @TIME
# [100] LBS /DAY # >

POSITIVE: SHIPMENT(I~J);

PARAMETERS
SCOST(gJ) {PATHS}; «<COST of @OBJECTIVE / (WEIGHT of @BUTTER

/ DURATION of @TIME) # USJ_ /( [100] LBS / DAY) # >

SUPPLY(I) {DAIRIES}; < WEIGHT of @BUTTER / DURATION of @TIME
# (1001 LBS /DAY # >

DEMANDO) {WAREHOUSES}; «<WEIGHT of @BUTTER / DURATION of @TIME
# [100] LBS /DAY #

FUNCTIONS
OBJECTIVE := SUM (0,J) {PATHS} (SCOST(I,I)*SHIPMENT(I,j));

«<COST of @OBJECTIVE # US_$ # >

CONSTRAINTS
OUTBOUNDO) {DAIRIES} := SUM 0) {PATHS} (SHIPMENT0PD) =L= SUPPLY(I);

<< WEIGHT of @BUTTER / DURATION of @TIME # [100] LBS / DAY # >

INBOUND(J) (WAREHOUSES} := SUM 0) (WAREHOUSES} (SHIPMENT(IJ))
=Ex DEMANDO);

<< WEIGHT of @BUTTER / DURATION of @TIME # [100] LBS I DAY #N>

Figure 5.5 EML Schema With Typing

* One way to eliminate these security breaches would be to identify the fundamental

numerical objects in a model and provide a different type statement for each one. Then,

polymorphic typing could be used to type objects whose types can be derived from these
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declarations. For example, if "A(Ij)" is a technical coefficient in a linear constraint, "XU)" is a

decision variable and "B(i)" is the constraining resource, the type of A('FISHERMEN",

'SARDINES") could be determined from the type declarations of X("SARDINES") and

B("FISHERMEN-). There are two disadvantages to this proposal. It necessitates the

enumeration of many individual type definitions, and it lacks the perspicuity of indexed

EML notation.

A more concise and more powerful alternative is to use the modeler's indexing

scheme to individualize types. This can be done by appending index suffixes to concepts

declared in the type context. For example, each member of the "SHIPMENT" set in

Figure 5.5 can be given a different type by changing the set type statement dimensional

description from

WEIGHT of @BUTTER / DURATION of @TIME
to

WEIGHT of @BUTTER(I,J) / DURATION of @TIME.

This innovation also eliminates the other security loophole involving composition of

indexed objects. For example, if SCOST("DALLAS", "PITTSBURGH") were multiplied by

SHIPMENT (DETROIT", "MEMPHIS") the type of the resultant would be

<<COST of @OBJECTIVE*WEIGHT of @BUTTER(*DETROITO, MEMPHIS")
/ WEIGHT of @BUTTER('DALLAS','PITTSBURGH-) # US_$ # >>.

Any attempt to add the numerical resultant to another object which had the type of

<< COST of @OBJECTIVE # US.$ # >> would generate a numerical type error.

Concept indexing can be used in other ways to enforce the intent of the modeler. It

can be used to regulate the creation of additive aggregates within numerically valued sets.

Consider the "OUTBOUND" and "INBOUND" constraint sets defined in Figure 5.5. If each

SHIPMENT(IJ) variable has a different type because "@BUTTER" is indexed, then each of

these constraints would generate a type error because they attempt to sum variables with
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different types. Although we could resolve these differences by applying modeler-defined

conversion factors, as described in Chapter 4, a more elegant solution is possible using

indexed concepts and a concept graph.

Figure 5.6 is a concept graph for an improved model that includes indexed concepts.

The upward pointirg arrows follow the conventions of the last section: they are read as "is

a specialization of." Notice that "@BUTTER,I)" has two parent concepts, "@BUTTER(I,.)"

and "@BUTTER(.,J)." Both @BUTTER(i,.) and @BUTTER(.,J). possess the quality "WEIGHT"

and pass it as a legacy to @BUTTER(i,I).

@BUTTER(i,.) is defined to represent butter that originates at one specific dairy "i" and

terminates at any warehouse "j" in the "WAREHOUSES" index set. The dot notation, ".", is

to used to suppress the identity of the "J" and thus, capture the modeler's intent that the

identity of the warehouse is not important for this concept. Similarly, "@BUTTER(.,j)" is

defined to represent butter that originates at any dairy "i" and terminates at a specific

warehouse "j". These two concepts are used to capture the modeler's intent that it is only

valid to sum shipments that originate at the same dairy "i" or terminate at the same

warehouse "j". All other shipment aggregations are invalid. For example, an arithmetic

@ U T rERCI,.) @B 3U 7 TE R( @TIME OBJECTIVE
H/i WEIGHT DURATION COST

BUTrER(I)

Figure 5.6 Concept Graph With Indexed Concepts
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expression such as

SHIPMENT( DALLAS', DENVER') + SHIPMENT(mDALLAS*,"WICH ITAO)

would produce a valid type of

c<WEIGHT of @BUTrER("DALLASm, 8.m ) / DURATION of TIME# LBS / DAY#>>

However, an expression such as

SUM (I,J) (PATHS) (SHIPMENTS(IJ))

would not be a legitimate construct in the type context in Figure 5.5 because @BUTTER(I,J)

does not have "@BUTTER(.,.)" as an ancestor. Although this graph employs multiple

inheritance, the "SUM" operation that uses its generalizations is index specific, eliminating

any ambiguity. Figure 5.7 is a revision of Figure 5.5 using indexed concepts.

A third use of concept indexing is to regulate the comparison of additive aggregates

between different numerical sets that share one or more simple indices. To demonstrate

this feature, we extend our improved model (Figure 5.7) in the following way. Shipments

of butter which arrive at warehouses are used to satisfy local inventory requirements.

Shipments received in excess of local needs are forwarded at some expense to consumers.

The additional EML and type language declarations for this embellishment are shown in

Figure 5.8. The concept graph for the complete model (Figures 5.7 & 5.8) is shown in

Figure 5.9.

The type context now includes three additional indexed concepts: "@BUTTERU,k),"

"@BUTTER(.,k)" and "@BUTTER(J,.)." These objects represent butter shipped from a

specific warehouse to a specific consumer, butter shipped from any warehouse to a

particular consumer, and butter shipped from a particular warehouse to any consumer,

respectively. While these concepts and the ones that were introduced earlier are adequate to

regulate the aggregation of shipments between dairies and warehouses and between

warehouses and customers, they are not sufficient to model shipments which enter and
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leave the same warehouse. Each material balance constraint, "BALANCEO)," is invalid

because its aggregated inbound shipments and aggregated outbound shipments have

<< QUANTITIES
WEIGHT :LBS;
COST : US-$;
DURATION: DAY;

<<CONCEPTS
@<- @BUTTER(.) [WEIGHT];

@BUTTER(i,.) <-- @BUTTER(ij)
@BU1TER(.,j) <-- @BUTTER(,fl

SETS
DAIRIES 1; << nominal
WAREHOUSES J; << nominal
PATHSI~j): f CROSS ({DAJRIES) , (WAREHOUSES)))};

VARIABLES
SHIPMENTI,D (PATHS); <<WEIGHT of @BUTTERVJ) / DURATION of @TIME

# (100 LBS /DAY # >
POSITIVE- SHIPMENT(Ifl;

* PARAMETERS
SCOSTV(I{PATHS); << COST of @OBJECTIVE / (WEIGHT of @BUTTEROij)

/ DURATION of @TIME) # USJ /Q 100] LBS / DAY) # >

SUPPLY(I) fDAJRIES}; << WEIGHT of @BUTTER0,.) / DURATION of @TIME
# [100J LBS /DAY # >

DEMANDO) (WAREHOUSES); << WEIGHT of @BUTTER(.,j) / DURATION of @TIME
#[100ILBSIDAY#>>

FUNCTIONS
OBJECTIVE: SUM 0I,J) (PATHS) (SCOST(I,j)'SHIPMENT(i,D);

<<COST of @OBJECTIVE # US_$ # >

CONSTRAINTS
OUTBOUND(I) {DAIRIES} := SUM Q) {PATHS} (SHIPMENT0J)) =L= SUPPLY(I);

<< WEIGHT of @BUTTER(I,.) IDURATION of @TIME # (1100] LBS / DAY # >

INBOUND() (WAREHOUSES) :z SUM Q) (WAREHOUSES) (SHIPMENTQD)
* =zE= DEMANDU)

<< WEIGHT of @BUTTER(J DURATION of @TIME # (100] LBS IDAY U >

Figure 5.7 EML Schema Revision With Indexed Typing
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different dimensional descriptions. The left-hand side of BALANCEU) has the type

<< WEIGHT of @BUTTER(.,J) / DURATION of @TIME # LBS / DAY # >>.

The right-hand side of BALANCE(J) has the type

<< WEIGHT of @BUTTERO,.) / DURATION of @TIME # LBS I DAY # >>.

<< CONCEPT GRAPH

* <-- @BUTTER(,j)[ WEIGHT]
@BUTrER(*,J) <-- @BUTER(ij)
@BUT'rER(*,J) <.- @BUTTER(,k) >>

SETS
CUSTOMERS k; << nominal >>
PATHS(,j) := CROSS ((WAREHOUSES}, (CUSTOMERS)));

VARIABLES
FLOWQ,k) {LINKS); << WEIGHT of @BUTTER(,k) / DURATION of @TIME
# [100] LBS / DAY # >>

POSITIVE: FLOW(J,k);

PARAMETERS
COST(,j) (LINKS); << COST of @OBJECTIVE / (WEIGHT of @BUTTERJ,k)

/ DURATION of @TIME) # US.$/( [100] LBS / DAY) # >>

RETAIL(i) (DAIRIES); << WEIGHT of @BUTTER(.,k) / DURATION of @TIME
# [100 LBS / DAY # >>

DEMAND]) (WAREHOUSES; << WEIGHT of @BUTTER / DURATION of @TIME
# [100] LBS/DAY #>>

FUNCTIONS

TOTALCOST :- SUM (J,k) (LINKS) (COST(j,k)*FLOW,k)) + OBJECTIVE;
<< COST of @OBJECTIVE # US_$ # >>

CONSTRAINTS
BALANCEQ) (WAREHOUSES) := SUM (1) {PATHS) (SHIPMENTJ))

-L- SUM (k) (LINKS) (FLOWQk)) -DEMAND();
<< WEIGHT of @BUTTER(*J) I DURATION of @TIME # [100 LBS / DAY # >>

Figure 5.8 Transshipment Model Components
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@OBJECTIVE
@TIME COST

DURATION

@BUTTER(I,.) @BUIrER(*D @BUTTER(.,k)
WEIGHT WEIGHT WEIGHT

@BUTTER(IJ) @BUTTER],k)

Figure 5.9 Concept Graph For Transshipment Model Schema

The source of the problem is that @BUTTER(.,J) and @BUTTERO,.) do not have the

same index suffixes. The origin of the suffix of @BUTTER(.,J) is the "PATHS(ij)" index set.

The origin of the suffix of @BUTTER(,.) is the "LINK(j,k)" index set. In both cases,

however, only the "j" or warehouse index is visible, the other index in each suffix has been

suppressed. If we adopt the convention that indices are not dummy, that is, an index is

uniquely associated with a set of identifiers, we can resolve this problem by concluding that

the order in which "j" appears in a suffix is immaterial. Thus, "GU.)" or "(.,j)" are

indistinguishable. Figure 5.9 introduces a new concept, "@BUTTER(*,J)," in the concept

graph to document this interpretation.

The "*" operator is a powerful idea for manipulating concepts, but it should be used

cautiously. Indiscriminate use would dilute the power of typing.

D. APPLICATION DOMAINS

The type language, in its current form, has a very low degree of semantic

commitment: while the language distinguishes between unit labels, quantity labels and

concept labels and regulates how these labels may be composed to form language
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statements, individual labels have no predetermined meaning. For example, if a modeler

wishes to ascribe the dimension of length to a modeling language parameter, he could

represent this quantity with an arbitrary label. The labels "LNGTH" or "L" might be

chosen as suggestive mnemonics for the word "length," however, "ABC123" would be

equally legitimate. The purpose of this section is to discuss the advantages that accrue from

fixing the meaning of labels in the type language.

Standardization of labels for units, for quantities and for concepts increases the value

of typing as ;.Aodel documentation. This allows potential users to understand what the

model purports to do without learning to decipher the model-peculiar mnemonics used to

name parameters, variables and functions. Related to the issue of facilitating

communication between people is the issue of coordinating models with the information

resources that provide their data. Label standardization could enable a parameter's type to

be a formal specification to an exogenous data source, such as a database. This would

provide additional model security by preventing integrity problems which occur when the

data source changes but these changes are not reflected in the model.

Other benefits flow from fixing the meaning of labels. At present, if the modeler

wishes to use the metric units of length, "meter" and "centimeter," to describe objects in a

model, and foresees a need to coerce one unit to the other, the necessary identity must be

included in the model. In general, the modeler must enumerate many of the unit, quantity,

and concept coercions required. If these labels are standardized, the identities that relate

units to other units, quantities to other quantities and concepts to other concepts can become

an exogenous part of the model. For example, the Avoirdupois Weight system is

applicable in many different modeling settings. The modeler, or someone else, could

prepare a list of identities that capture all commensurate relationships between "ounces",

"pounds", "stones", "short tons", and "long tons." These identities could be stored in a
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separate text file and be made available during syntactic analysis. Besides the obvious

advantages of reuse and a more concise representation, this approach also makes the model

more robust. The modeler is no longer obliged to anticipate the coercions that may be

necessary as the model and the data evolve.

If quantity labels and concept labels are standardized, concept graphs may also be

standardized and reused. The advantage of reusing concept graphs is that it enforces

consistency in the way that types derived from standard labels are used in other models.

For example, the concept graph defined for a transportation model in the last section

(Figure 5.8) did not allow flows with different origins and different destinations to be

summed. This idea is developed further in a subsequent chapter on integrated modeling.

Taken collectively, each of the above innovations can be used to define domains for

different modeling applications. Each domain would consist of a closed set of unit labels,

quantity labels, and concept labels; their identities; and a concept graph. The idea is that a

master modeler who is expert in modeling a particular application, like banking or the

manufacture of ammunition, would identify the concepts, quantities and units that are

central to his area of expertise. He would then dictate identities and a concept graph that

would be general enough to cover most of the valid models that could be built for the

application, but limited enough that violation of any important property or relationship

would be caught by the type analyzer. The domain would then be made available to a

person modeling a specific problem within the application area.

Domains are potentially useful in both industrial and academic settings. Dolk and

Konsynski <1985> observe that the advent of personal computers and sophisticated

modeling software have "put models and modeling capabilities into the hands of unskilled

modelers." In their view, the increases in personal productivity attributable to

decentralized modeling are being offset by organizational turmoil caused by lack of control
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of this function. For example, lack of standardization in assumptions and in data

specifications raise questions of model accuracy, validity and integrity. Domains could

provide part of the solution to these problems by providing a uniform way to view models

within an organization and a way to enforce that view through the type system.

The utility of domains is not limited to modeling application. Domains could also be

used to help teach modeling skills. A teacher could prepare a domain to codify the

important properties of a class of models. A class assignment might be to formulate a

typed modeling language schema for a particular textbook problem using that domain. The

student would get immediate feedback if a proposed solution violated any of the important

teaching points in the exercise. In effect, the type analyzer ani the domain would act as a

surrogate for the teacher as it looks over the shoulder of the student and points out errors.
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VI. TYPING APPLIED TO INTEGRATED MODELING

The purpose of this chapter is to discuss the application of typing to a method of

modeling called integrated modeling. We define an integrated model to be a model that is

synthesized from two or more distinct, but logically related models. The chapter is

presented in three sections. We begin by describing a context for the practice of integrated

modeling and summarizing the techniques used by modelers to unify models expressed as

mathematical programs. In the second section we provide two sets of examples. The first

set illustrates integrated modeling techniques in an untyped modeling language and serves

as a basis for discussing the support provided by untyped modeling languages to integrated

modeling. The second set demonstrates the support that a typed modeling language could

provide to a representative subset of the same model integrations. The last section of the

chapter introduces a new method of constructing an integrated model based upon what we

call a library unit. A library unit is a model or model fragment that includes a typed model

schema, a concept graph, a unit system and an interface that regulates its use. A syntax is

proposed for a model integration language utilizing library units. Finally, examples are

provided that illustrate both the language and the library unit construct.

A. INTEGRATED MODELING

1. A Rationale For Building Models of Systems As Integrated Models

An area of growing importance in OR/MS is the modeling and optimization of

problems involving the operations of systems. We define a system as a group of objects or

processes, interrelated in a regular way to form a complex whole. While there have been

many successful applications of OR/MS techniques to diverse segments of systems,

successful studies that model and optimize both the components and the interconnections in
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a system have been more rare. However, as optimization technology has advanced,

instances of system models have been solved with increasing frequency. During the past

twenty years successful results have been reported for the following classes of problems:

vehicle routing/inventory allocation (Federgruen and Zipkin <1984>), production/

finance/marketing (Damon and Schramm <1972>); production/distribution (Brown,

Graves and Honczarenko <1987>, (Cohen and Lee <1988>) and investment/finance

(McInnes and Carlton <1982>).

Problems which involve the operation of real-world systems challenge our ability

to formulate and implement models as well as our arsenal of algorithms. It is generally

accepted that people seem to be able to keep only a few distinct things in their minds at one

time. Consequently, the complexity of understanding any system increases rapidly with its

size. As the complexity of a task increases, the potential for error increases

disproportionately. As modeling errors increase, model validation consumes a

disproportionate share of the available modeling resources.

A common approach to dealing with a large problem of any kind is to decompose

it into smaller problems. This divide and conquer strategy is the rationale for the modeling

technique called integrated modeling. Integrated models are built in a modular fashion,

unifying independent, but logically connected models. Each component model represents

some coherent aspect of the modeled system. By developing a model of a complex system

as a set of indepen,nt, smaller models, the total difficulty of the design task decreases.

Integr?' J models of systems possess another desirable quality. If the component

models are already validated, validating the system model is considerably easier. Only the

component model interconnections need to be tested and sanctioned. This fact is

particularly appealing when we consider that organizations that have practiced modeling for

some time already possess validated models for various aspects of their activities.
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2. The Mechanics of Integrating Algebraic Models

In this section we present integrated modeling from a mechanical perspective. We

do not presume to explain why a modeler chooses to decompose a system model in a

particular way nor do we advocate a methodology for this task. We do know, however,

that the possible ways of integrating two models are limited in two ways. First, they are

restricted by the grammar of algebraic notation. Second, there are only two possible

configurations that can be formed from two model components. Either they preserve their

independence and are interconnected through the definition of new constraints, or one

model is subordinated to the other by adopting the naming and indexing conventions for

parameters and/or variables in the dominant model.

When two models expressed in algebraic notation are integrated, the modeler binds

them together in one or more of the following ways:

(1) by replacement: the parameters, variables or indices in one model are replaced by
the parameters, variables or indices in the other model;

(2) by index composition: a Cartesian product of an index set from one model is taken
with an index set from the other model. New parameters and/or variables are then
defined over the new index set;

(3) by constraint composition: new constraints are created by composing the left-hand
side (right-hand side) of a constraint in one model with the left-hand side (right-
hand side) of the other model by a relational operator;

(4) by objective function composition: a new objective function is created by adding
or subtracting the objective functions of the component models;

(5) by functional definition: the value of parameters (variables) in one model are
defined to be a mathematical function of parameters (variables or parameters and
variables) in the other model; and,

(6) by constraint creation: a new constraint is defined which relates an arithmetic
expression of one or more variables in one model to an arithmetic expression of
one or more variables in the other model.
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In addition to these six techniques, the implementor of an integrated model has the

full power of algebraic notation at his disposal. New variables and new parameters may be

defined over existing index sets. Completely new index sets (with their associated

variables and parameters), new variables, new parameters and new constraints may be

defined. The modeler is also free to eliminate symbols and constraints from the

component models as necessary.

Untyped and typed EML schemas are introduced throughout the remainder of this

chapter to illustrate the mechanics of integrated modeling and to demonstrate typing. Each

schema employs one or more of the following graphical conventions: boldfaced italics,

double line boxes and strikeout ( --- ). Boldfaced italics are used to highlight new

constructs in schemas. Double line boxes are used in schemas of integrated models to

identify the constructs contributed by one of the two component models. Strikeout is used

in schemas of integrated models to eliminate superfluous constructs.

B. INTEGRATING ALGEBRAIC MODELS WITH UNTYPED AND

TYPED MODELING LANGUAGES

1. Integrated Modeling In An Untyped Language

In this section we construct five integrated models using transportation models

and a production/location model as components. The purpose of these examples is to

demonstrate some of the techniques we have described in the previous section and to point

out the strengths and weaknesses of untyped modeling languages in this endeavor. The

component models we will use are listed in Figures 6.1, 6.2, and 6.3 and will be referred

to as Model 1, Model_2 and Model_3, respectively. Each one is written in EML

(Appendix A).
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SETS
SOURCE I;
SINK];
ARCiD := { CROSS( {SOURCE} , {SINK}) };

VARIABLES
X(J) {ARC;
POSTIVE: X(,j);

PARAMETERS
S() {SOURCE);
DO {SINKI;
CQJ) ARc};

FUNCTIONS
OBJ:= SUM(QJ) {ARC} (CO&,f)XIJ) );

CONSTRAINTS
SUPPLY(i) {SOURCE}:= SUM() {ARC} (X(ij)) =L= SO);
DEMAND(]) {SINK} := SUM) {ARC} (X(i,J)) =E= Do);

Figure 6.1 Model-l (Transportation Model as EML Schema)

SETS
ORIGIN k;
DESTINATION I;
LINK(k,) := CROSS( {ORIGIN}, {DESTINATION}) };

VARIABLES
Y(k,I) {LINK};
POSITIVE: Y(k,I);

PARAMETERS
SUP(k) {ORIGIN};
DEM() {DESTINATION};
COSTkI) {LINK;

FUNCTIONS
TOT_$ := SUM(k,I {LINK (COST(k,I*Y(k,I);

CONSTRAINTS
OUT BND(k) {ORIGIN} := SUM(I) {LINK (Y(k,I)) =L= SUP(k);
INBND(I) {DESTINATION) := SUM(k) {LINK) (Y(k,I)E=DEM(I);

Figure 6.2 ModeL2 (Transportation Model as EML Schema)
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a. Example 1

The simplest integrated model that can be formed from Model_1 and Model_2

is to sum their two objective functions (technique 4) and to take the union of their constraint

sets. The composite objective function would be written in EML as

TOTAL-COST :a TOT_$ + OBJ ;

This new model could be used to represent the decisions and resulting costs of operating

two independent distribution systems (although it would be preferable to optimize each

component model separately).

b. Example 2

Three other integrations of Model_1 and Model_2 are apparent when both

models are considered pictorially. One integration would be to connect the sink nodes in

Model-l's graph to the source nodes in Model_2's graph with arcs (Figure 6.4). One

possible use for such a model would be to represent a system where the things shipped

from "SOURCE I" to "SINK J" in Model_1 were forwarded at some cost to "ORIGIN k" in

Model_2.

An algebraic representation of this graphical model (Figure 6.5) is achieved

by adding several interconnections to the component models. First, using technique 1, we

define a new index set, "PORTAGE", which is the Cartesian product of the SINK and

ORIGIN index sets defined in Model-1 and Model_2, respectively. New nonnegative

variables, "P(j,k)", and new parameters, "CP(J,k)" are defined over the "PORTAGE" set to

represent the level of flow and the cost per unit of flow between each SINK "J and each

ORIGIN "k." Next, a composite objective function, "TOTALCOST" is defined

(technique 4). TOTAL-COST is composed of the objective functions of Model)l and

Model.2 and a new term,

SUM(J,k) {PORTAGE} (CP(,k)*P(,k)).
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SETS
FACILITIES j;
PLANT k;
ACTIVITY (j,k): { SELECT( CROSS( {FACIL".f ( PLANT))) );

PARAMETERS
CORP DEMAND;
PLANf COST(k) (PLANT);
FAC LIMITr LOWER(k) (PLANT);
FAC7LIMIf -UPPER(C) {PLANT);
PROD CO.TG,k) (ACTVIY);
FAC dOSTQ,k) {ACTIVflY;
FAC7UTIL LOWERO.k) (ACTVIY);
FACUTILuPPERUQk) (ACTIVTY);

VARIABLES
OPEN PLANT(k) {PLANT);
PRODU0,k) {ACTIVflY);
OPEN FACO~k) (ACTIVTY);
POSITIVE: PRODU,k);
BOOLEAN: OPEN FACU,k), OPEN PLANT(k);

FUNCTIONS

OBJECTIVE: SUM(J,k) {ACTIVITY (PROD COSTQ~k) *PRODU,k) + FAG COSTO,k)
OPEN FAC(J,k))

*+ SUMQ(k) {PLANT) (PLANT-COST(k) * OPENLANT(k));

CONSTRAINTS

QUOTA: SUMg,k) {ACTIVTY} (PRODG,k)) =E= CORP DEMAND;
CO-LOCATION(k) {PLANT} := FAG LIMIT LOWER(k)TOPEN PLANT(k)

=L= SUM(D) {XCTIVITY} (OPENFACq,k))
=Lm FAC-LIMIT-LOWER(k)*OPENYLANT(k);

UTILIZATION(J,k) {ACTIVITY} := FAG UTIL LOWERG,k) * OPEN FACU~k)
=L= (PROD(,k)
=L= FAG UTIL-UPPER,k)*OPEN..FAC(J,k);

FAG ALLOCATIONWD {FACILITIES} :z SUM(k) {ACTIVflY (OPEN FACO,k))
-L= 1

Figure 6.3 ModeL-3 (Production Model as EML Schema)

The new term represents the cost contribution of items shipped from each SINK " to each

ORIGIN Nk." The last interconnection is created by creating two new sets of constraints that

enforce a material balance across each SINK Il" and across each ORIGIN *k.
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"MATBALl Q)" consists of the left-hand side of the "DEMANDC)" constraint in Model 1 set

equal to a sum of the new variables,

SUM(k) {PORTAGE} (P(j,k)).

"MAT..BAL2(k)" consists of the left-hand side of the "SUPPLY(k)" constraint in Model..2 set

equal to a different sum of the new variables,

SUM(J) {PORTAGE} (P(J,k)).

The last step in the development of the model in Figure 6.5 from Model1 and

Model.2 is to eliminate the component-contributed constraints which do not apply to the

integrated formulation. Parameters and variables which are defined but not referenced in

the integrated model are also removed. The "D(J)" parameters and the DEMAND(J)

constraints contributed by Model 1, and the "SUP(k)" parameters and the "OUTBND(k)"

constraints contributed by Model_2 are eliminated to enforce simple throughput restrictions

on SINK "J" and ORIGIN "k," respectively.

c. Example 3

Another way of integrating two transportation models graphically is to

superimpose the sink nodes in one model's graph upon the source nodes in the other

model's graph (Figure 6.6). The physical analog of such a graph would be a distribution

MODEL I MODEL 2

Source i Sink j Origin k Destination I

Figure 6.4 Integration By Connecting Arcs
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SETS

SOURCE I;
SINKj;
ARC(IJJ :u {SOURCE) x (SIN IQ;

ORIGIN k:
DESTINATION 1;I
UNK(k,I) -?CCROSS( (ORIGIN). (DESTINATIOND))

PORTAGEO,k) :- (SINK) x (ORIGIN);

VARIABLES

X(I,JARC); POSITIV.,E: X(i.
Pg,k) (PORTAGE):- POSITIVE: P0,k);
V~, (LINK) POSITIVE: VQ,=

PARAMETERS

S(I) (SOURCE);

C(I,j (ARC);

CPGl,k) (PORTAGE);

E - m11(k ORA~

DM (DESTINATION):

FUNCTIONS

OEL :- SUM(ID (ARC} (C(,,D*X(ID)

ITOT S:- SUMk, 1INq (COSTkI YM

TOTAL COST :z ODJ + TOT $ # SUM (G,k) (PORTAGE)(CP(I,k)'P(,k));

CONSTRAINTS

SUPPLY() (SOURC~E) := SUMO) (ARC) (X(IDj) wLs 5(I);
OSMANDQi) (S INq ;) - SL'M(Q) CRC) (XoIj)) sln 0Q):

!IN B-NIID E.STINATIONI:- SUMN 4INK (kwEuDEM(0

MAr BAL,. 18(SIK :w SUM(I) (ARC) (X(Ij))
RE- SUM(k) (PORTAGE) (PG) ;

HATDBAL2 (ORIGIN) :a SUNG) (PORTAGE) (PGk))
wE- SUM(I) (LlNIQ (Y(kj));

Figure 6.5 EML Schema for Example 2
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system in which transshipment points would correspond to the superimposed nodes. An

algebraic representation of this integrated model is shown in Figure 6.7. In this

formulation, Model.2 is subordinate to Model_1. Technique 1 has been applied, replacing

Model 2's ORIGIN Ok" index set with Model-l's SINK "j" index set. In conjunction with this

change, all references to ORIGIN k" from sets, parameters and variables contributed by

Model.2 to the integrated model are redirected to SINK *J."

After index usage has been redefined, composition of objective functions

(technique 4) and constraint composition (technique 5) are applied. As was done in

Example 1, the objective functions of Model)l and Model_2 are summed to define an

objective function for the integrated model (TOTAL..COST). The "MAT..BALj" constraint

is an equality composed of the left-hand side of the DEMANDU) constraint from Model1

and the left-hand side of the "OUTBNDU)" constraint from Model-2. Notice that index of

"OUTBND" has been changed from "k" to "j" to conform with the index replacement done

at the beginning of this example.

MODEL 1 MODEL 2

Source i Sink j Destination I

(Origin k)

Figure 6.6 Integration By Superimposing Source
Nodes on Sink Nodes
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The last modeling step in this integration is to eliminate the OUT BNDU)

constraint and the SUPU) parameter contributed by Model.2. This was also done in

Example 2 and the justification for it is the same.

d. Example 4

The last integration of two transportation models we consider is the

superposition of sink nodes and the superposition of source nodes to create a multi-

commodity transportation model (Figure 6.8). We have made an arbitrary decision in the

algebraic representation of this model (Figure 6.9) for Model1 to dominate Model_2.

SOURCE "I" has replaced ORIGIN "k", SINK "j" has replaced DESTINATION "I" and "ARC(I,D"

has replaced "LINK(k,I)."

Two other interconnections have been added to bind the component models

together. Using technique 6, a joint capacitation constraint, labelled "CAPACITY(IJ)" in

Figure 6.9, has been defined. Each CAPACITY(IJ) constraint is an inequality. The left-

hand side of the constraint consists of a sum of the decision variables in each model

component that reference the same ARC(,IJ) element. The right-hand side of the inequality is

a new parameter, "UPPERBOUND(i,J)," that represents the upper bound on total flow

across ARC(I,j). The last interconnection is the composite objective function,

"TOTALCOST."

e. Example 5

The previous four examples have all involved integrating two specific models

within the class of transportation models. We now consider the integration of Model 2, a

transportation model, to Model_3, a mixed-integer formulation of a production/location

model.

Model_3 (Figure 6.3) is a simplification of a multi-commodity model

developed and solved by Brown, Graves and Honczarenko <1987> for Nabisco Brands.

99



SETS

SOURCE I;
SINKI;
ARC(I,D: {SOURCE) x {SINK};

n DS~nSTION 1; 
I

UNKDIo) =I CROSS( SINKI R{ESTINATION} h;

VARIABLES

X(I,D {ARC}; POSIIVE: XO,D;

VYI JUN! POSITIVE:Y

PARAMETERS

S(i {SOURCE};

C(IJ) {ARC);

DEM(I) {DESTINATION};IImi LOT I LINK)

FUNCTIONS

OBJ := SUM(Ij) {ARC) (C(ID*X(Ij));

ITOT §:= SUM, JUN2 (COSTg,*Yg,[I

roTAL-COST := ODJ.+ T0T$;

CONSTRAI NTS

SUPPLY(I) {SOURCE}: SUMQ) {ARC} (X(IJ)) =L-- S(i
DEM.AND(j) {SINIq SWJM() (ARC) (XQ.) --

IN BNIJDESTINATIOti:= SUMSDIINO f0Q=E.DEM

MIAT BALO) (SINK) := SUM(I) (ARC) (X(Ilj)) zE= SUM (I) (LINK) (V(,));

Figure 6.7 EML Schema for Example 3
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Source i Sink j

(Origin k) (Destination I)

Figure 6.8 Integration By Superimposing All Node Sets

The original model is intended to manage complex problems involving plant site selection,

equipment location and utilization and material distribution. Our version is a restricted to

one commodity and does not model secondary equipment nor the distribution of finished

goods.

Before discussing how Model_2 and Model_3 are combined to form a more

comprehensive model, an explanation of Model_3's notation and structure is necessary.

The model introduces two indices and one derived set.

j is the index of FACILITIES (e.g., ovens)
k is the index of PLANT sites

ACTIVITY is a set containing the allowable combinations of facilities and plant sites.
It is a subset of the Cartesian product of FACILITIES and PLANT.

The given data for the model are:

CORPDEMAND corporate production requirement
PLANT COST(k) the fixed cost of operating a plant at site "k"

FACLIM LOWER(k), the minimum and maximum number of facilities at plant site "k"
FACLIMUPPER(k)

101



SETS

SOURCE I;
SINKJ;
ARCOQDj= f CROSS( {SOURCE} , {SINKq))};

02311f3M -11%. -IkATIfOkW .

VARIABLES

XO,D {ARC}; POSITVE. X(QD;

IY JARCJ POSITIVE: YQI

PARAMETERS

SQ) (SOURCE);

SU9PIS2RCE}:
DEO{SINK);

COSTJ ARCL

UPPERLBOUND(IJ) (ARC);

FUNCTIONS

061 := SUM(IID (ARC) (C#J'XoD);

ITOT $:= SUM~ (ARCI COSTf07,I 1;

TOTAL COST :w OBJ + TOT $

CONSTRAINTS

SUPPLY@I {SOURCE): SUM() (ARC) (XQ,D ) =L- S@);
DEMANDO) {SINI- SUM@) {ARC) (XoD) =E= D(D;

IOUT BNDO) (SOURCE): SUMO) (ARC) (f(I,) zL U()
IIN BIJDM (SINK) :- SUM (ARC) (YOIJ) =E=DEMM)

CAPACIY(a,I) (ARC) :a X(,D. Y(Ij) xL= UPPER...BOUND(ID;

Figure 6.9 EML Schema for Example 4
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PRODCOST(,k) the cost of producing one unit on facility I at plant site "k"
FACCOST(,k) the fixed cost of operating facility J at plant site "k"

FACUTILLOWERO,k), the minimum and maximum number of units that can be
FACJUTILUPPER,k) produced on facility "I" at plant site "k"

The decision variables for the model are:

OPENPLANT(k) a 0-1 close-open variable for plant site "k"
OPENFACU,k) a 0-1 assignment variable of facility "j" to plant site "k"
PRODG,k) the number of units produced on facility "J" at plant site "k"

The purpose of the mathematical program is to minimize "OBJECTIVE" subject to four sets

of constraints: "QUOTA", "CO-LOCATION", "UTILIZATION" and "FACALLOCATION." The

QUOTA constraint assures that the corporate production requirement is met. The

CO-LOCATION constraints limit the assignment of facilities to plant sites. The UTILIZATION

constraints provide upper and lower bounds for open facility-plant site combinations. The

FACALLOCATION constraints assure that a piece of facility is assigned to only one plant

site.

Our intention is to restore the product distribution feature to Model3 by

combining it with Model_2. The corporate production requirement is unbundled into

individual customer demands and each open plant site "k" may ship to any destination "I".

The integrated model, shown in Figure 6.10, is the result of the following four step

procedure:

S1. Replace Model 2's ORIGIN "k" index set by Model 3's PLANT "k" index set.
Redirect all ORIGIN k" references in Model_2 to PLANT"k" (technique 1).

S2. Form a new objective function, "TOTAL COST", by summing the objective
functions of the component models (technique 4).

S3. Define a new constraint, "SUPPLY(k)", that assures that the product shipped from
any plant site "k" does not exceed the total finished goods produced at the site on
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its assigned facilities. "SUPPLY(k)" is composed of the left-hand side of

Model_2's "OUTBND(k)" constraint set and the expression

SUMO) {ACTIVITY) (PRODU,k)).

S4. Eliminate "QUOTA(k)" and "CORPDEMAND" from Model_3; eliminate
"OUT _ND(k)" and "SUP(k)" from Model.2.

f. Untyped Modeling Language Support of Integrated Modeling

(1) Strengths. The lion's share of the support available to the practitioner of

integrated modeling when the model components are written in any modeling language

(typed or untyped) is provided by a text editor, not by the modeling language itself. At the

modeler's direction, the text editor concatenates model files, eliminates unwanted language

statements, moves blocks of text, and finds/replaces character strings designated by the

modeler.

After the integrated model text file has been prepared, untyped modeling

language translators provide two useful consistency checks. First, they enforce a "define

before use" rule. If, for example, the definition of a parameter is eliminated from the

model, but the parameter has been left in a constraint by mistake, the modeling language

translator will catch the error. Another useful aid is the post-compilation cross-reference

listing. The cross-reference listing provides the text line number where each labelled object

in the model is declared and used. Objects which are declared but not used can be

removed from the integrated model.

(2) Weaknesses. In order for the four model integrations posed above to be

meaningful the modeler must insure that certain criteria are satisfied. Consider the

composition of the objective functions of Model)I and Model..2: optimization of their sum

only makes sense when both functions are measured in the same units. An additional

necessary condition for Examples 2 and 3 to be well-formed is that both Model)I and

Model_2 ship the same quantity of the same thing, that it be measured in the same units,
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SETS
FACI UTI ES ;
PLANT k;
ACTIVI1YGk): I4 SELECT((FACAUTY) , (PLANT));

DESINTIN 1;I
IUNKI)0 :a IOSi PLNM x DESTINATION))I

PARAMETERS
COP DRIANDr,

PLANT...OST~k) {PLANT;
FAC UMIT LOWERWc (PLANT);
FACumITUPPERQ) (PLANT);

DDES11IMNATION);

PROD COSTGAk (ACTVTY)l
FAC-6OSTQG) {ACTM1IY);
FAC UTIL,_LOWERU,k) (ACTIVITY);
FAC:UTILUPPER,C) {ACTM1IYJ;

VARIABLES
OPEN PLANT~k) (PLANT):
PRODGQk) {ACTIVTY);
OPEN .FACG~k) (ACTV1rYj;
POSITIfVE: PRODQ,k);
BOOLEAN: OPEN-FACQ ,k), OPEN-PLANTQk);

FUNCTIONS

OBJECTIVE:= SUMU,k) (ACTM1Y} (PROD -COSTQ,k) *PRODQ,k) + FAC-COSTG,k)
OPEN FACQ~k)) + SUMOk) fPLANT) (PLANT COST(k) *OPEN PLANTQk));

ITOT$:- SUM 2n UNqI COSTP! ,4

TOTAL-COST :a OBJECTIVE.+ TOT $

CONSTRAINTS

QUOTA. SUM O~k) JACTPI r (PRODi,h)) E& CORP.DBAI

CO-LOCATIONQ4) (PLANT):= FAC-UMIT-LOWERk) *OPEN-PLANTQk)
aLs SUMW) (ACTMTY} (OPEN..FACQ,k))
=Ls FAC-UMITJ.JPPERG)*OPEN.PLANT(k);

LJ11LIZATIONQ,k) (ACTMTY) :- FAC-UTIL...LOERG,k) *OPEN ACQIC)
-L- (PRODQ,k)
aLa FAC -UT1LUPPERQ,k)OPEN-FACQ,k);

FAG .LLOCATIONQ) (FACILITIES):. SUMQk) (ACTIVITY) (OPEN FACQj,k)) =L. 1;

SUPPLY(k) :- SUMI(I) (LINK) (Y(kQl) -L- SUMQj) (ACTIVITY (PROD(jk));

IN BNQ IDESTINATION:= SUMN tNO (YrE. DEM;

Figure 6.10 EML Schema for Example 5
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and that the temporal setting of both models be the same. (There is a notion of things

moving per unit of time in a transportation model. Things arriving at a node, say at a

monthly rate, should depart the same node at a monthly rate.) In an untyped modeling

language, the modeler is the first and last line of defense for detecting these kinds of errors.

2. Integrated Modeling In A Typed Language

The mechanics of manipulating the algebraic representations of model

components in a typed modeling language are the same as those of an untyped modeling

language. The same methods detailed in Section A of this chapter are used and the

integrated representation is prepared outside the modeling system environment using a text

editor. The important difference between the two mediums is the proportion of

responsibility for model verification that the modeling language can assume from the

modeler.

In any computer language, the language compiler guarantees that every program

it accepts is a legal combination of the operators and labels that comprise its grammar,

nothing more. The programmer retains responsibility for the computer representation of

the problem and all aspects of the problem which cannot be expressed in the language.

Extension of a modeling language grammar through typing increases the proportion of a

model which is formal and checkable. In exchange for this adoption of the conventions of

a typed language, a modeling language system (translator and type analyzer) assumes more

of the error detection responsibilities of the modeler.

To use the error checking abilities of a type language to their full potential, the

intentions of the modeler must be expressed within the boundaries formed by the language

itself and the types defined for a particular application domain. If the modeler elects to

assign a numerical object the universal type instead of a type recognized in the application

106



domain of the model, the modeler reassumes the responsibility for the dimensional

consistency of all constructs that use that object.

The algebraic interconnections that a modeler introduces between two component

models to form an integrated model make assertions about the semantic equivalence of

indices, parameters and variables. When a modeling language is typed, a formal basis

exists for affirming or denying these assertions. This is done by evaluating each algebraic

function and constraint for type correctness. Any replacement, composition or creation

which is inconsistent with the definition of the language or the type context generates a type

error. If a type error is produced, one or more of the modeler's assertions is false. This

testing can be done manually by the modeler or delegated to the modeling language system.

Thus, typing provides the modeler an in-depth error defense.

We now consider two examples of this approach. The basis for verifying the

interconnections is the type language as defined in Chapter 3 and the concept graph and

quantity declaration given in Figure 6.11. We have used this type context to type each of

the component models introduced in section B. Typed versions of Model-1, Model_2 and

Model_3 are listed in Figures 6.12, 6.13, and 6.14, respectively.

a. The Transshipment Model

The transshipment model that was constructed in section B, Example 3 makes

three assertions: one in the form of an index replacement, another in the form of a

constraint, and a third in the form of a function. The typed algebraic representation of this

model is shown in Figure 6.15.

(1) Index Replacement. When the SINK "J" index set replaced the ORIGIN "k"

index set to establish the indexing structure for the integrated model, an assertion was

made: the ordering of the elements of the ORIGIN k" set was not an operative part of

component Model 2. That is, Model_2 contained no parameters or variables that were
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SETS

SOURCE 1; << nominal
SINK]; <<nomina"
ARCOJ) :. { CROSS({SOURCE), {SINK}) 1;

VARIABLES

X(I,D {ARC}; -c WEIGHT of @GOOD(iI) / DURATION of @TIME # [100)
LBS/DAY 0 >

POSITIVE: XO,D;

PARAMETERS

SO) (SOURCE); << WEIGHT of @GOOD(I,. / DURATION of *TIME
0 [100) LBS/DAY # >>

DO) (SINK); <<~ WEIGHT of 00000(.JD / DURATION of @PTIME
1 [100) LBS/DAY 0 >>

C(1,j {ARC} ; << COST of OTRANSPORT / WEIGHT of OGOOD(IJ) /
DURATION of @TIME) US$ /1100) LBS/DAY) I >>

FUNCTIONS

OBJ :- SUM (1,D (ARC) ( COJ)*X0,V)<< COST of &TRANSPORTI US_.$ #

CONSTRAINTS

SUPPLYQ) {SOURCE} := SUM 0) fARC} (XOIj) ) =- SO) ; << WEIGHT of @GOOD(I.)
DURATION of 0 TIME 1 1100) LBS/DAY 0 >>

DEMANDW {SINK} :- SUM (I) ARC} (X01j)) -Eu DW; <<WEIGHT of @GOOD(.J) /
DURATION of @TIME 1 (100) LBS/DAY I >>

Figure 6.12 ModeljI (Transportation Model as Typed EML Schema)

identified by lag or lead operations on index values (e.g., "Y(Ij+1 )" ). When the

component models are typed, this assertion can be affirmed or denied by examining the

index type declaration of the replaced index set In this case, "ORIGIN V" is a nominal index

set, affirming the substitution.

(2) Function Composition. The second assertion in this integrated model is

that the objective functions of Modelj1 and Model..2 are additive. The propriety of

summing the objective functions of ModeI and Model-2 to form the composite objective

function, TOTAL-COST can be checked by determining the type of the sum and

109



SETS

ORIGIN k; << nominal >>
DESTINATION I ; << nominal >
UNK(kI) :a { CROSS( {ORIGIN} , {DESTINATION}) }:

VARIABLES

Y(k,I) JUNK); << WEIGHT of @GOOD(kQl / DURATION of 4*TIME
# [100) LBS/DAY 0 >

POSITIVE: Y(kQI;

PARAMETERS

SUP(C) {ORIGIN) ; < WEIGHT of 00000D^k.) / DURATION of
*PTINE # 1100) LBS/DAY 0 >>

DEM(I) {DESTINATION} ; << WEIGHT of 6)GOOD(.,I) / DURATION
of 4PTIUE 1 1100) LBS/DAY I >

COST(k,I) JUNK; << COST of @TRANSPORT/ WEIGHT of VGOOD~kI)
/DURATION of @TIME) USL$ [ (100) LBS/DAY ) I >>

FUNCTIONS

TOTS_ :- SUM(k,I) JUINK} ( COST(k,I)'Y(k,I) ; < COST of 4@TRANSPORT # UL$ I >>

CONSTRAINTS

OUT .BND(k) {ORIGIN} :u SUM(I) JUINK} (V(k,l)) -L.- SUP(k);
<< WEIGHT of @GOOD(k,.) / DURATION of 4@TIME 1 1100) LBS/DAY I >>

IN-BND() (DESTINATION) :- SUM(k) JUINK) (Y(k.I)) wEu DEM(I);
c< WEIGHT of @PGOOD(.,I) / DURATION of *PTIME # (100) LBS/DAY I

Figure 6.13 Model 2 (Transportation Model as Typed EMIL Schema)

comparing it to the type statement of TOTALCOST. Since all three functions have the type

<c< COST of @TRANSPORT #i USs_ # >> the assertion is true.

(3) Constraint Composition. Each MAT-SALO) constraint (Figure 6.15)

asserts that the decision variables in both model components represent shipment of the

same quantity of the same thing, measured in the same units, over the same period of time.

Notice that each decision variable in this constraint has a unique type:

<< WEIGHT of @GOOD(Ij) / DURATION OF TIME # [100] LBS/DAY # >> for X (1,J) and

<< WEIGHT of @GOODOj,I) # [1001 LBS/DAY # >> for YU,.I) Also notice that unlike the

objective function example just presented, there are no parameters in the material balance
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SETS
FACILITIES J ; c nominal >>
PLANT k ; cc nominal "
ACTIVITY (Lk):= { SELECT( CROSS( {FACIUTY) .(PLANT))))y,

PARAMETERS
FAC AVMIL( (FACILITIES) t111;4- EXISTENCE OF OACTVVUVIY. 0 BOOLEANI 0
COFRP DEMAND ; -c- LEVEL of &00O0(.,.) 0 BOXES 0 "
PLANT COST(k) {PLANT) ; c4 COST / EXSTENCE of ePLANTIC) I US$ / BOOLEANI 0

FACULMITLOWER(C) (PLANT) -co EXISTENCE of SACTIVITV(,I) /EXISTENCE of
*PLANTAk) I UNITY 0

FAC LIMIT UPPER(k) {PLANT); cC EXISTENCE of VACTW'ITY(,k) /EXISTENCE of
*PLANT(k) 0 UNITY 0

PROD COSTU,k) (ACTIVITY) ;<c COST of OPRODUCT1ON / LEVEL of &GOODG~k)
I US$S / BOXES I

FAC-COSTOk) (ACTIVITY) ; <vCOST / EXISTENCE .1 4PACTITVG,k)
0 US$/ BOOLEANI >

FAC-UTIL-LOWERQj,k) {ACTIVITY) o LEVEL of GGOODQ~k) / EXISTENCE of
*PACT1WTrY(J,k) 0 BOXES / BOOLEAN 0 >,

FAC-UTIL-UPPERU,k) {ACTIVITY); c< LEVEL of &GOOD(Lk)/ EXSTENCE of
*ACTIVITY(j,k) 0 BOXES / BOOLEANI 0

* VARIABLES
OPEN PLANTOk) (PLANT; -c-cEKSTENCE of &PLANT(k) 0 BOOLEAN I >
PROD (j,k) (ACTIVITY)-,< LEVEL at eGOODGak) # BOXES 0>.
OPEN FACU,k) {ACTIVITY) ; << EXISTENCE of @ACIvITY0,k) I BOOLEANI 0>
POSITIVE: PRODQj,k);
BOOLEAN: OPEN-FAC(J,k), OPEN-PLANT(k);

FUNCTONS
OBJECTIVE := SUM (,k) (ACTIVITY) (PROD-COSTQj,k) * PROOG,k) + FAC COSTG,k) * OPEN ACJ~k))

+SUM(k) 4PLAHN) (PLANTCOST~k) ;OPEN PLANTrQ));
-COST of OMANUFACTUING 0 USLS 0 i,

CONSTRAINTS

FAC-ALLOCATIONW) IFACILITIES) :- SUM~k) {ACTM1IY) (OPEN FACg,k)) =Ls FACAVNILW
<< EXISTENCE OF ACTiVffT7O,) I BOOLEAN 0 >>

Q1JOTA:w SUMQAk {ACTM1IY) (PROOG~k)) sEx CORP-DEMAND;
-cvLEVEL at *GOOD(.,.) 0 BOXES # >>

COLOCATION(k) IPLANU) : FAC UIMIT LOWER(k) *OPEN-PLANT(k)
zLxiSLIMQ) ACTIVITY) (OPEN FACQj,k))
-L- FACUMIT.UPPER~k)OFEN-PANT(k);

cc EXISTENCE of ACTIVITY(.,k) I BOOLEANI 0

UTIUIZATIONQ~k) 4ACTMTY) a FAC UTIL -LOWERG,k) *OPEN -FACQ,k)
UL.- PROOG.k)
=Ls FACIJUTIL-UPPERO~k)*OPEN FACQ,k);

4- LEVEL of &GOOD(/k) I BOXES I

Figure 6.14 Model 3 (Production Model As Typed EML Schema)



SETS
SOURCE i ; << nomiul >>
SINK J ; noinal >>
ARCO.D :- { CROSS( (SOURCE) , (SINK) };

DSIAI N1;< omhia >I
ULINK0,) :. j CROSS( (SINK) , (DESTINATION) :i

VARIABLES
X(IJ) (ARC); << WEIGHT of @GOOD(IJ) I DURATION of @TIME # 11001 LBS / DAY # >>

VY. tINK) <<WEIGHT of 2"OaQ/ DURATIONo d TIME # [1001 LBS /DAYf#->>

POSITIVE: X(i,j), YU,1);

PARAMETERS
S() {SOURCE}; << WEIGHT of @GOOD,.) I DURATION of @TIME # [100] LBS I DAY # >>
D(1 N(Iq: < . IHT of @G O".,) / _D..RATIONo o @T,_ i [100 LBS ! D Y if

CQJ) JARC); << COST of @TRANSPORT/(WEIGHT of @GOOD(Ib
IDURATION of @TIME # US$ / ([100] LBS /DAY) # >>

vWJ(INK WEIG Cf-..) DUTIO oT i. ([100] LBS 1 DAY) if'"

DEM(I) (DESTINATION}: << WEIGHT of @GOOD(.,) / DURATION of @TIME
# I([100] LBS DAY) # >

COST],I) (LINK); << COST of @TRANSPORT / (WEIGHT of GOOOQ,) / DURATION of
@TIME)i # US =I(100I LBS DAY) # >>

FUNCTIONS
OBJ :. SUMiD {ARC) (CQ,,"XIJD) ; << COST of @TRANSPORT # US_ #>>

_ TOT :- SUM],I (LINK) (COSTQ,I)*Y(,I)) ; << COST of @TRANSPORT # US$ # >>

TOTAL COST:= OBJ + TOT. ; <<COST of @TRANSPORT # US.S# >>

CONSTRAINTS
SUPPLY(I) (SOURCE) := SUM) (ARC) (X#,D) L, S(i); << WEIGHT of @GOODO,.)/

DURATION of @TIME # [100 LBS / DAY # >>

DGMAND(])(SINK]: U()~R)((J)uu q WIH f@OO.D
D IDAATII of 2Th'E #1100)' L MDAY Nf

...... I *~ .... - ... VI I'".I ~I *II l - - '- .. "' :' ; v '

<<WEIGHT of @GOOD(.O / DURATIONof@TIME # 100 LOS/DAY if

MAT BAL(J) (81N1€ :a SUM (I) (ARC) (XI,PJ) wEw SUM(I) (LINK) (Y(,I)) ;
c< WEIGHT of eGOOD(2*,) / DURATION of @TIME # [100) LBS / DAY I ,

Figure 6.15 Transshipment Model as Typed EML Schema
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constraint to convert the types of the decision variables into a common type for addition and

comparison. This equality is legal within the type context (Figure 6.11) because the

concept @GOOD(*,J) has been declared to be a common ancestor of both @GOOD(i,J) and

@GOODJ,D. It allows all X(I,j) decision variables with the same value of the "j" index to

be summed and all Yj,I) decision variables with the same value of the "j" index to be

summed. Each sum has the type

c< WEIGHT of @GOOD(*,i) / DURATION of @TIME # [1001 LBS/DAY # >>.

The "*" symbol in the concept suffix means that the identity of the suppressed index is not

relevant in subsequent determinations of type equivalence. (If the identity of the suppressed

index were important, the "." operator would be used instead of the "*" operator). This

common generalization of the @GOOD(i,J) and @GOOD,I) concepts in the type context

affirms that the left-hand side and the right-hand side of each MATBALG) constraint have

equivalent types and are comparable for numerical equality.

b. The Production/Location/Distribution Model

Figure 6.16 is the typed EML schema for the integration of a typed version of

the production/location model (Figure 6.13) with a typed transportation model

(Figure 6.14). Like the typed transshipment model described in the preceding section, this

integrated model also contains interconnections which are assertions about index types

(PLANT "k" and ORIGIN "k" ), and as.,ertions about the dimensional consistency of a

composite objective function ( TOTALCOST ) and a set of constraints ( SUPPLY(k) ).

Rather than perform a near duplicate analysis of these interconnections, we draw attention,

instead, to two typing artifacts that are unique to the construction of Figure 6.16.

In the component transportation model, the variable Y(k,I) is declared to have

the type

<< WEIGHT of @GOOD(k,I) / DURATION of @TIME # [1001 LBS/DAY # >>.
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SETS
FACILITIES 1; << nominal >>
M.ANT k ; << nominal >>
ACTIVITY (j,k) :={ SELECT( CROSS( {FACIU1Y}, (PLANT)));

DETIATO 1 -<nominal >>I
IUNK~KDI :=jCROSS((PT) x fDESTINATIONI)) I:

PARAMETERS

FAC-AVAIL(j) {FACILIT1ES) / I/; << EXISTENCE of ACTMTYG,.) #I BOOLEAN # >
CORPDGMA.NO 4 4e. EGIof @000r'(,.) 0 BOXES If

PLANTCOST(k) {PLANT};
<COST / EXISTENCE of @PLANT(k) # US$1 BOOLEAN # >

FACULMIT LOWER(k) {PLANT);
<< EXISTENCE of ACTIVflY(.,k) / EXISTENCE of @PLANT(k) # UNITY # >>

FAC LIMIT UPPERQ) {PLANT};
<< EXISTENCE of ACTIVITY(.,k) / EXISTENCE of @PLANT(k) # UNITY #N>

PROD-COSTO,k) {ACTMTY};
<< COST of @PRODUCTION / LEVEL of @GOODG,k) # US_ / BOXES #N>

FAC-COSTO~k) {ACTIVflY;
<< COST / EXISTENCE of @ACTIVITYGk) # USS- / BOOLEAN # >>

FAC-UTIL LOWERO~k) {ATIVITY;
<< LEVEL of @GOODU~k) / EXISTENCE of @ACTIVITYGj,k) # BOXES / BOOLEAN # >

FAC-UTIL UPPERU~k) (ACTIVITY);
<< LEVEL of @GOODU,k) / EXISTENCE of @ACTM1IYO,k) # BOXES / BOOLEAN #N>

SUPk) RLAN)-

7 D E M ( f D E S I N A T O f4 ; 4 . EV O L M o f @ G O O0 K ,.) 1 D U R A T I O N a f @ T I M E i f B OX- E ! D A Y # t o

COST~kI) (LiK); << LEVEL of @GOOD(..i) / DURATION of @TIME # BOXES IDAY #U >>BX~lA)~

<< COST of @TRANSPORT/I ( LEVEL of @GOOD(k.r) / DURATION of @TIME)

ATEMPORAL / 1 /; << DURATION of @TIME 0 DAYS I~

VARIABLES

OPEN PLANT(k) {PLANT) ; << EXISTENCE of @PLANT(k) # BOOLEAN #N>
PRODUQk) {ACTMV1Y};c<c LEVEL of @GOODUAk # BOXES #>>
OPENJLACU,k) fACTIVITY) << EXISTENCE of @ACTIVITY 0j,k) # BOOLEAN #N>
POSITIVE: PRODGj,k);
BOOLEAN: OPEN_ FAC(J,k), OPEN PLANT(k);

IY(k,I) JUNK); << LEVEL of @GOOD(k,D / DURATION of @TIME # BOXES / DAY #N>
[POSITIVE: Y k.0

Figure 6.16 Production-Distribution-Location Model (1 of 2 pages)
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FUNCTIONS

OBJECTIVE := SUMU,k) {ACTrM1Y) (PROD-.COST0,k) *PRODU,k) + FAC COST0,k)
OPEN FACU~k)) + SUM(k) {PLANT) (PLANT COST(k) *OPEN PLANT(k));

c- COST of @MfANUFACTURING i US._.$ #i>>

ITT := SUM I N! (COSTIZ1D *V <<COST of 2TRANSPORT #US_ #$>> Z

TOTAL COST := ToT$s. OBJECTIVE ; << COST of VOPERAIONS 0 US.) > >

CONSTRAINTS

FAC-ALLOCATION(D {FACILITIES}: SUM(k) {ACTM1Y} (OPEN ..FACG~k))
=L= FAC AVAILW;

<< EX ISTENCEIOF ACTIVIY64 #. BOOLEAN #i>>

QUOTA. SUMOj,k) (ACT4Y (PRODJ,ft)) . CORP 15514.D
-GGLEV.EL of @GOOD(.,.) #f BOXES if>;

CO-LOCATION(k) (PLANT): FAC LIMIT - OWER(k) * OPEN PLANT(k)
=L= SUM(D {ACbI"Y (OPEN...FAC0,k))
=L= FAC-LIM IT-UPPER(k)*OPEN-PLANT(k);

<< EXISTENCE of ACTMVTY(.,k) #f BOOLEAN #i>

UTILIZATlONG,k) {ACTIVIT)V}: FAC UTIL -LOWERJ,k) * OPEN ..FACU~k)
=L= PRODGk)
=L= FACUTIL -UPPERJ,k)*OPEN-FACGj,k);

<LEVEL of @GOODO,k) #f BOXES #if>

( u EVL of@GOCD(k,.) /DURATION of@TJ!Mr if OX6S !DA.Vif --

SUPPLY(k) :-SLM(I) (LINK) (V(kI)) * A TEMPORAL
sLa SUM(I) (ACTIVITY) (PROD(Jlk));

<< LEVEL of @GOOD(',k) # BOXES #>>

IIN-BND(I) {DESTINATION) := SUM(k) {LINK} (V(k,I)) =E= DEMOI);
<' LEVEL of @GOOD(. I) / DURATION of @TIME if BOXES / DAY if >>

Figure 6.16 Production-Location-Distribution Model (2 of 2 pages)

To integrate the typed transportation model with the typed production/location model it is

necessary to change this declaration to

<< LEVEL of @GOOD(k,I) / DURATION of @TIME # BOXES/DAY # >>.

This revision of the quantity of the @GOOD(k,I) dimensional clause and its attendant unit

clause is justified by the fact that @GOOD(k,t) inherits both WEIGHT and LEVEL in the

concept graph (Figure 6.11). The same revision is made to the type statements of
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COST(kI), SUP(k) and DEM(I). If @GOOD(k,I), @GOOD(k,.), and @GOOD(.,I) did not have

the LEVEL quantity, the type analyzer would notify the user of these discrepancies during

its syntactic analysis.

The second typing artifact is also related to the type statement of Y(k,I). To

make the SUPPLY(k) constraint consistent, it is necessary to reconcile the fact that the type

statement of PROD(,k) does not contain a @TIME dimensional clause. Since this deficiency

cannot be corrected automatically, a conversion parameter, "ATEMPORAL", is included in

the integrated model to change Y(k,I) from a rate to an instantaneous value.

C. INTEGRATED MODELING WITH LIBRARY UNITS

Although a model may be conceived as several models interconnected, it must have a

monolithic physical representation in modeling language to be implemented. Contemporary

modeling language compilers have stringent input requirements. A model must satisfy the

language grammar. It must contain only unique names and obey the "define before use"

principle. Lastly, it must be expressed in a single textfile. In the previous section these

standards were achieved manually by the modeler with the assistance of a text editor. The

principal disadvantage of this approach is that it is very complex. It requires the modeler to

deal with all the index sets, parameters, variables, functions and constraints of both

component models simultaneously. In this section we present an alternate representation

for an integrated model that preserves the identity of each model component and

emphasizes model interconnections while suppressing diversionary detail. The

representation is based on an abstraction we call a library unit and a collection of operators

for its manipulation.

1. An Introductory Example

Figure 6.17 displays the typed modeling language representation of a

transportation model that has been tailored to fulfill a submissive role in an integrated
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model. The original model, shown in Figure 6.18, will be referred to as &TRANSPORT; the

revision will be referred to as %EASTBOUND. To obtain %EASTBOUND from

&TRANSPORT the following changes were made: first, the "J" index of the SINK set was

renamed "k"; second, the SOURCE set was replaced with a set of the same type named

"TRANSSHIP"; next, the "i" index of the TRANSSHIP set was renamed "j"; and last, the

SUPPLY parameter set and the OUTBOUND constraint set were eliminated. ( Note: SUPPLY

and OUTBOUND were indexed over "j" in {TRANSSHIP} when they were eliminated because

TRANSSHIP had replaced SOURCE and "J" had replaced "I" .) The procedural description

of how to obtain %EASTBOUND from &TRANSPORT given above can be written concisely

in a formal notation. Consider this typed modeling language excerpt, augmented by special

purpose operators:

SET TRANSSHIP j ; << NOMINAL >>
LIB %EASTBOUND := &TRANSPORT WHERE

J <- k;

SOURCE <= TRANSSHIP;
I <-J;
ELIM ( SUPPLY(), OUTBOUND() );

END

"LIB" is a modeling language keyword that causes an in-line substitution of an

exact or a modified copy of an archival model, called a library unit. The names of library

units are prefaced by the "&" character. Instances of library units are identified by names

beginning with the "%" character. The character string "%EASTBOUND :- &TRANSPORT-

indicates that the left argument is an instance of the right argument.

The differences between the instance and the original are detailed after the

keyword "WHERE". If the instance was an exact copy, this keyword would be omitted.

The keyword "END" is used to mark the end of the library unit modifications. Three

special operators are employed in this description. Operations are applied sequentially;

each one assumes that the operations that precede it have been completed. The "<-

117



CONCEPT GRAPH
@0* <-- @OPERATIONS [ COST ]
@OPERATIONS <-- @TRANSPORT
@* <- @TIME[ DURATION)
@* <-- @GOOO..) [WEIGHT I
@* < @GOOD(.,k) [ WEIGHT]
@GOODQ,.) --- @GOOD,k)
@GOOD(.,k) <-- @GOOO4,k) >>

< UNIT SYSTEMS
WEIGHT : AvoirdupoWeIght
COST : US._Cuwency
DURATION: Stvidard_Tme >>

SETS
TRANSSHIP J; << nominal >>
SINK k; << nominal >>
ARC (,k) :, { CROSS( (fRANSSHIP} , {SINK}) };

VARIABLES
FLOW(,k) {ARC}; << WEIGHT of @GOODJ,k)/DURATION of @TIME

# [100 LBS/DAY # >>
POSITIVE: FLOW(J,k);

PARAMETERS
DEMAND(k) {SINK}; << WEIGHT of @GOOD(.,k)/DURATION of @TIME

# [100] LBS/DAY # >>

COSTU,k) {ARC}; << COST of @TRANSPORT / (WEIGHT of @GOODQ,k) /
DURATION of @TIME ) # US_$ / ([100] LBS/DAY) # >>

FUNCTIONS
OBJECTIVE := SUM(,k) {ARC} (COST(,k)*FLOWGk)); << COST of

@TRANSPORT # US_$ # >>
CONSTRAINTS

INBOUND(k) {SINK} := SUM(k) {ARC} (FLOWUk) =E= DEMAND(k);
<< WEIGHT of @GOOD(.,k) / DURATION of @TIME # [100] LBS/DAY # >>

Figure 6.17 %EASTBOUND EML Schema

operator replaces the character string at the head of the arrow with the character string at the

tail. The "<=" operator is a type-constrained version of "<-". It has three actions: it

erases the definition of the typed object on the left of the operator in the instance; it replaces

the character string on the left with the character string on the right; and, it inserts an

assertion into the text of the model that the type of the right argument is equivalent to the

type of the left argument. This assertion is tested during type verification. If the assertion

is false, an error message is generated. In this example, the assertion would be:

<< ASSERTION: TYPE(TRANSSHIP J) ,,?a nominal >>
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The third operator used in the example is "ELIM( )". This operator eliminates the named

objects included within its parentheses from the instance. This involves masking object

declarations and replacing the names of numerical objects in arithmetic expressions by "0"

and "1." The "0" is used when the object is an operand in addition, subtraction or a

relational operation. The "1" is used when the object is an operand in multiplication or

division.

To preclude any ambiguity that would occur if the LIB keyword was used to

create another instance of &TRANSPORT, the names of the objects in %EASTBOUND

assumed from &TRANSPORT need to be distinguished. Hence, in all modeling language

statements that follow the instantiation of %EASTBOUND, the names of its objects are

prefixed with its instance name followed by a period. For example, FLOWU,k) in

Figure 6.17 would be referred to as "%EASTBOUND.FLOWJ,k)."

2. Library Units

A library unit is a model or fragment of a model that has been kept as a template

for building new, perhaps integrated, models. Each library unit has four parts: a type

context,a body, a unique name and an interface (e.g., Figure 6.18). The type context

contains a concept graph and a measurement system. For example, in Figure 6.18 the

quality COST is attributed to the concept @OPERATIONS and measured in US-Currency.

The body of a library unit is a typed modeling language representation that can contain

index sets, parameters, variables, functions and constraints. The body may be a complete

model or a model fragment that contains, for example, data transformations or a collection

of constraints. Model fragments, however, are still required to satisfy the "define before

use" principle. Each type used in the body can be derived from the concepts, quantities

and measurement systems declared in the type context. This, of course, can be verified by

applying the type calculus.
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<CONCEPT GRAPH
<- @OPERATIONS [COST

@OPERATIONS <- @TRANSPORT
@* <- @TIME[ (DURATION]I
@* <- @GOODO,.) [WEIGHT]I
@* <- @GOOD(..D [WEIGHT]I

@GOOD(.,D <- @GOOD(IDj>>

<<UNIT SYSTEMS
WEIGHT :Avoirdupois Weight
COST :US CurrenCy
DURATION :Standard limo >

SETS
SOURCE I ; <<nominal >
SINKJ ;<<nominal>>
ARC 01D :- { CROSS( SOURCE} , {SINK}));

VARIABLES
FLOWNJ) {ARC}; «<WEIGHT of @GOOD(ij)/DURATION of @TIME

POSITIVE: FLOW(ij);#(10]LSDY#>

PARAMETERS
SUPPLY(J) {SINK}; <<WEIGHT of @GOODO,.)IDURATION of @TIME

#f (100] LBS/DAY #i>>
DEMANDO) (SINK); «<WEIGHT of @GOOD(j/DURATION of @TIME

if (100] LBS/DAY #if>
COST(ij) {ARC}; << COST of @TRANSPORT / (WEIGHT @GOOD(ij) /
FUNCTIONSDURATION of @TIME) #f US-$/ ([100] LBS/DAY) #if>

OBJECTIVE := SUM~ij) {ARC} (COST~ij)*FLOW(Q,));
CONSRAINS <<COST of @TRANSPORT #f US_$ #i>>

OUTBOUND(i) {SOURCE} := SUMO) {ARC} (FLOW(ij) -Lu' SUPPLYi;
<<WEIGHT of @GOODO,.) / DURATION of @TIME #f (100] LBS/DAY #if

INBOUNDJ) {SINIq *u SUMQj) {ARC} (FLOWOiJ) =Lx DEMANDD;
<<WEIGHT of @GOOD(.,j) / DURATION of @TIME if [100] LBS/DAY if>>

<INTERFACE
-c-: 1, J, @*, @GOOD, @GOOD(i,.), @GOOD(.jI), WEIGHT, @TRANSPORT, COST;
can: SINK, SOURCE, ARC, SUPPLY, DEMAND, COST, FLOW, OBJECTIVE,

OUTBOUND, INBOUND;

Figure 6.18 &TRANSPORT Library Unit
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The type context and body of a library unit are summarized by a unique name and

manipulated through two lists of arguments, called an interface. One list is headed by the

relabel operator, "<-", the other by the replacement operator, "<=". The presence of a

label, index suffix, etc. in a list means that it is a legal left-hand argument for the operator

that heads the list. While any character string in the type context or body can appear in the

relabel list, only names of typed objects (e.g., variables) can appear in the replacement list.

Any index set, parameter, variable, function or constraint in the library unit is a legal

argument for the "ELIM( )" operator. The contents and organization of the interface are

specified by the designer of the library unit to control its usage. When no interface is

specified, the only permissible use of the library unit is to copy it verbatim. We envision

that a call on a library unit using the "LIB" keyword would be embedded in a model schema

as a macro expansion that would replace itself with multiple typed modeling language

statements. Before such a model schema would be submitted to a modeling language

translator and type analyzer, each "LIB" statement would be replaced by its expanded form.

The job of expanding library unit references would be performed by a separate

preprocessor. The output of the preprocessor would be a typed modeling language textfile.

This full form of the model schema would then be submitted directly to the modeling

language translator or, if desired, revised manually by the user before further processing.

In summary, the library unit is intended as means of saving and reusing models.

Reuse of models is facilitated through the provision of special operators for relabeling, for

replacing typed objects, and for eliminating modeling language objects. These features

automate many of the tedious, repetitive symbol manipulations that currently are done to

tailor model schemas for new applications.

We caution that these tools can be used improperly. Naive elimination, for

example, can make portions of an already validated model dimensionally inconsistent.
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Moreover, the ability to replace one index set with another is no guarantee that indexed

operations defined over an incumbent set will be implemented in the desired way over a set

of smaller or larger dimension. Although errors which result from misuse of a model's

interface arguments are detectable during type verification, it is still the modeler's

responsibility to understand the library unit and the effects his modifications will have on

the consistency of the algebraic and type specification of the model.

3. Integrated Modeling With Library Units

One obvious advantage of a library unit or any archival model is that it allows

modelers to build upon the work of others. The importance of the library unit construct to

integrated modeling is its power as an abstraction and as executable documentation. First,

by summarizing a model by a unique name and an interface of arguments, the library unit

suppresses diversionary detail and emphasizes the modeling constructs that bind

component models together. Second, integrated models constructed by combining

modeling language statements and library unit invocations provide an executable record of

how the full model submitted for model verification was derived from its components. In

addition, the use of "%instancename" prefixes on modeling language identifiers preserves

the origin of each construct assumed from a component model.

These advantages are illustrated by reforming two integrated models introduced

earlier in this chapter using library units. Figure 6.19 is a transshipment model derived

from the &TRANSPORT library unit (Figure 6.18). Figure 6.20 is a

production/location/distribution model derived form &TRANSPORT and a

production/location library unit, Figure 6.21. See Figures 6.15 and 6.16 for comparison.
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<,c CONCEPT GRAPH
@* <'- @GOOO(*,D [WEIGHT]I

@GOOD(*J) <- @GOOD(ID>

us %WESTSOURCE:- &TRANSPORT WHERE
SINK <- TRANSSHIP;
EUM( DEMANDW,. IN80UND(D);

END
US %EASTBOUND:- &TRANSPORT WHERE

k;.
I(-t
SOURCE <m %WESTSOURCEJTRANSSHIP;
ELIM( SUPPLYW,. OUTBOUNDW));

END
FUNCTIONS

OBJECTIVE:= %WESTSOURCE. OBJECTIVE + %EASTBOUND.OBJECTIVE;
<< COST df @OBJECTIVE # US..S # >

CONSTRAINTS
MAT-BALD {%WESTSOURCE.TRAN1SSHIP} a SUMQ {%WESTSOUIRCE.ARC)
(%WESTSOURCE.FLOWO,D) -E. SUM(k) {%EASTBOUNDARCI (%EASTBOUND.FLOWU,k));

<< WEIGHT df @GOODQ,)/DURATION of OTIME # [100] LBSIDAV #U>

Figure 6.19 Transshipment Model Constructed From The &TRANSPORT Library Unit

US %BISCUITS:= &PRODUCTION WHERE

ELIM( CORP DEMAND, QUOTA);
END

SETS
CUSTOMER 1; << norriral >>
UNK(kj): f CROSS( {%BISCUITS.PLAN),{JCUSTOMERSJ));

LIB %DISTRIB:= &TRANSPORT WHERE
@TRANSPORT -@ODISTRIBUTION;
WEIGHT <- LEVEL;
[100] POUNDS <- BOXES;

I ,-)k,

ARC <w LINK
SINK <a CUSTOMER
SOURCE <w %BISCUflS.PLANT;
EUM( SUPPLY(k), OUTBOUND(k));

END
PARAMETERS

ATEMPORAL Il/; << DURATION of @TIME # DAY #U>

FUNCTIONS
OBJECTIVE:= %BISCUITS.OBJECTIVE + %DISTRIB.OBJECTIVE;

<<(COST of @OPERATIONS # US" # >

SUPPLY(k) {PLANT :SUMP) {UNK} (%DISTRIB.FLOW(k,)) *ATEMPORAL
-L- SUM Q) {%BISCUrTSACTIVIIY (%BISCUrTS.PRODUGk);

<< LEVEL of OGOOD(*,k) # BOXES # >

* Figure 6.20 Production-Distribution Model Constructed With &PRODUCTION and
&TRANSPORT Library Units
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<< CONCEPT GRAF** -c- S:XOD(.,..) I LEVE.L I
@000D(.,.) <- @GOODJ,k)
@"(- @OPERATIONS [ COST I
@OPERATIONS<- @MANUFACTURING
@MA4JFACTURING <- @PLANTk) [ EXISTENCE I
@MANIFACTURING c- @PRODUCTION
@MANUFACTURING <- OACTMTY(.,k) [ EXISTENCE I
@fMANUFACTURING <- @ACTMTYG.) [EXISTENCE )
*ACTMTY(.,k) c- @ACTMTYk)
@ACTMTY0,.) <- @ACTM1TY,k) >>

<<UNIT SYSTEMS
LEVEL Contaimrs
COST USCuncy
EXISTENCE : Boolmn >>

SETS
FACILITIES j; <c noinhl >>
PLANT k; << nomnmI 2>
ACTIVITY 0,k) : (SELECT(CROSS((FACIUTY), (PLANT))));

PARAMETERS
FACILITY AVAIL(j) (FACILITIES) / 1; << EXISTENCE of ACTIMTYo,.) # BOOLEAN # >>
CORP DEMAND ; << LEVEL of @GOOD(.,.) #BOXES >>
PLANT COST(k) (PLAN; -< COST / EXISTENCE of @PLANTok) # US.$ / BOOLEAN # >>
FACLIMITLOWERNc) (PLANT} ; << EXISTENCE f @ACTMTY(.,k) I EXISTENCE of @PLANT(k)

# UNITY N >>
FAC_LIMITUPPER(k) (PLANT); << EXISTENCE of @ACTIVITY(.,k) / EXISTENCE of @PLANT(k)

# UNITY # >>
PRODCOST0,k) (ACTVITY) ;-< COST of @PRODUCTION I LEVEL of @GOODO,k) # US-$ / BOXES # >>

PARAMETERS
FACCOSTk) (ACTITY) ; << COST / EXISTENCE of @ACTIVITYQ,k) U US_$ / BOOLEAN # >>
FAC UTILLOWERQ,k) (ACTIVITY); << LEVEL of @GOODO,k) / EXISTENCE of @ACTVTYo,k)

U BOXES / BOOLEAN # >>
FACUTIL.UPPERI,k) (ACTIVITY); << LEVEL of @0D00 ,k) / EXISTENCE of @ACTMTY],k)

# BOXES / BOOLEAN # >>VARIABLES
PRODO, 0 (ACTIVITY) ;<< LEVEL of @GOODOk) # BOXES # >>
OPENFAC(j,k) (ACTIVITY);<< EXISTENCE of @ACTIVITYQ,k) # BOOLEAN # >>
OPENPLANT {PLANT); << EXISTENCE of @PLANTO) # BOOLEAN # >>
POSITIVE: PRODOk);
BOOLEAN: OPENFACO,k), OPENPLANT(k);

FUNCTIONS
OBJECTIVE : SUM(,k) (ACTIVITY) (PROD COST,k) * PROD(,k) + FACCOSTO,k) * OPENFACQk))

+ SUMSo) (PLANT (PLANTCOST(k)' OPENPLANT(k));
CONSTRAINTS << COST of @MANUFACTURING # US$ # >>

FACALLOCATION) (FACILITIES):. SUM(k) (ACTIVITY) (OPEN_FACC,k)) =Lm FACAVAIL();
<< EXISTENCE OFACTIVITY,.) # BOOLEAN U >>

QUOTA:- SUM0k) (ACTIVITY) (PRODO,k)) -E- CORP DEMAND; << LEVEL of @GOOD(.,.) # BOXES # >>
COjLOCATION0) (PLANT) :u FACLIMIT LOWER(k) *"OPENPLANT(k)

-L- SUM (ACTIVITY) (OPENFAC0,k))
-L, FACIMIT UPPER( *OPENPIANT(k) ; -< EXISTENCE of ACTIVITY(.,k) # BOOLEAN o

UTILIZATION0,k) (ACTIVITY) : FACUTIL.LOWERQI0 * OPEN-FACQ,k)
aLs PRODG,k)
ALx FAC UTILUPPER0)*OPENFACO,k) ; << LEVEL of @GOODO,k) # BOXES # >><< INTERFACE

<-: @MANUFACTURING, @G00D, @GOOD(.,.), @GOOD(,k), BOXES, LEVEL, 's, k;
<-: CORPDEMAND, QUOTA >>

Figure 6.21 &PRODUCTION Library Unit
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VH. CONCLUSION

We believe that the type calculus for executable modeling languages presented

here advances the goal of making model construction, validation and interpretation easier,

faster and more reliable. Only the modeler can map real objects into model objects and only

the modeler can validate the relationship between reality and model. But, a typed ML

provides a context in which there is significant automatic support to check that modeler-

defined objects are correctly manipulated. Contemporary MLs without typing have only

the universal context of the properties and the laws of algebra: these are too weak to

provide any significant verification that the model captures the modeler's intent.

Formalizing the modeler's intention in the model schema with typing documents the

rationale that underlies the model's algebraic structure. This, in turn, helps model users to

interpret model results and to adapt the model in ways that will not violate its tenets.

The inclusion of typing in an ML provides additional automatic support for the logical

integration of distinct models. An ML with typing contains information about the meaning

of model objects and can automatically check some aspects of the integration that would

otherwise be the responsibility of the modeler to do by hand. An ML with typing also

offers the opportunity to save and reuse models through the notion of library units and a

collection of operations for their manipulation. The importance of the library unit construct

to integrated modeling is its power as an abstraction and as executable documentation.

First, by summarizing a model by a unique name and an interface of arguments, the library

unit suppresses diversionary detail and emphasizes modeling constructs that bind

component models together. Second, integrated models constructed by combining

modeling language statements and library units provide an executable record of how the full

model submitted for validation has been derived from its components.

125



The type calculus we have developed has limitations. It is adequate for representing

functions, equalities and inequalities composed of polynomials with dimensionless

exponents. It does not handle transcendental functions or relationships between units

which are not multiplicative (e.g., the relationship between the Centigrade and Fahrenheit

temperature scales). Another limitation is its reliance on additive homogeneity. While this

criterion is endemic to mathematical programming, the predilection to only add, subtract or

compare like things to like things is of secondary importance in other fields. For example,

in statistics, the merit of an arithmetic predictive equation is measured by how well it

explains the tendency of the dependent variable to vary with the independent variable in a

systematic fashion. Although the form of the equation may have some real-world basis,

such as an exponential form to measure absorption of a chemical in the blood stream,

additive homogeneity is an afterthought, accomplished by assigning appropriate

dimensions to the numerical constants determined by regression.

In developing typing, some ideas with surprising power have emerged. First,

concepts and the calculus to manipulate them are important and should be added to classical

dimensional descriptions. Second, typing of objects with multiple indices can be done

quite naturally and with as much abstraction as humans employ. Third, some part of the

human capacity to effortlessly generalize and specialize typing information can be captured

with a rather simple notion of concept graphs. In short, many intuitive ideas that humans

use to think about models can be formalized in a very natural way and making this explicit

adds to our understanding of models and the modeling process.
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APPENDIX A

A PARTIAL GRAMMAR FOR ELEMENTARY MODELING LANGUAGE
(EML)

A. IDENTIFIRS AND CONSTANT'S

<uppercase letter>:: "ANI"B" I"C"I ...ij"ZH
<special character>:: "211"I"I %
<alphanumeric>:: <uppercase Ietter>j<digit~jcspeciaI character>
<identifier>:: <uppercase letter><alphanumeric>*

<digit> :: "001"1 if1u21"3ifII4fI'5f1i6II7IM8I1if9I
<unsigned integer>:: <digit>+ I"POSITION" "(" <Index expression>""
<signed integer>%=+I"" <unsigned integer>
<decimal number> :=<unsigned integer>". "<unsigned integer>
<scientific number>:: <decimal number> "tE" ("-""+"] <unsigned integer>
<number>:: <unsigned integer> I <signed integer> I <decimal number>

I<scientific number>

B. SET DEFINITONS

<set definition> :="SETS" <declaration list>"
<declaration list>:: <declaration>I<declaration> (";'- <declaration>)*
<declaration>:: <set name><index$I"<element list>"f']";"

I<set name> <index tuple> ":="<set rule>";
<set name>:: <identifier>
<index> ::l owercase letter>Iindex expression>
<index expression> ::= <index>I<index>.cindex lag op> <unsigned integer>)
<index lag op> +"""*

<element list>:: <identifier> (';"<identifier>)
<index tuple> ::= <index>(",i<index>)*")
<set rule>:"= (<set name> I "UNION" "r <set rule> 8,0 <set rule> H)"

-DIFFERENCE'"-(" <set rule> "," <set rule>""
"CROSS"*( <set rule>"," <set rule> ")"
"SELECT" ("<set rule> [I[ *I index relation list> "])

In "PROJECTION" '(" <set rule> "[" <index>(,<Index>)*]""i)" ) ifY

<element comparison op> ::= "LT"I"LE"I" EQ"I"GE"I"GT"I"NE"
<index relation list>:: <Index relation> (NAND"I"OR" <Index relation>)*
<index relation> <i= ndex expression><element comparison op><index expression>

I "NOT" <Index expression>
I POSITIONO "(w <Index expression>"*)" [<element comparison op> <unsigned integer>]
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C. PARAMETER DEFINITIONS

<parameter definition> ::'PARAMETERS" <parameter list>%;"
<parameter list> :*<parameter dedlaaton>k~parameter declaration>

(''N<parameter declaration>)*
<parameter declaration>:: <parameter name> r' <set name> '} '/<vaue list>/I
<parameter name>:: <identifler>[<index tuple>1
<value list>:: <number>(", "<number>)*

D. VARIABLE DEFINITIONS

<variable definition>% 'VARIABLES" <variable list>';"
<variable list>:: <variable declaration>I<variable declaration> (";' <variable declaration>)*
<variable declaration> :=<variable name> r{' <set name>'}']
<variable name>:: <identilier>[<index tuple>]

E. FUNCT'ION DEFINITIONS

<function definition> ' FUNCTIONS' <function list>';'
<function list> <f= unction declaration>I1function declaration>(";" <function declaration>)*
<function declaration> <f= unction name> ["f" <set name>")"] ':=" <expression>
<function name> :=<identifier>[<index tuple>]

F. EXPRESSIONS

<expression>:- <term>I<unary op><term>I<expression> <binary op><term>
<term>:: <parameter name>I<variable name>I1function name>l<number>

I 'SUM' <control> '(" <expression> ')'I1index expression>
<control>:: <Index tuple> '{'<set name>"("<index relation list>]
<unary op>:: -I+
<binary op> ::'-*IN+ If"' '/'NINA
<logical binary op>:: =*-L-"G"

G. CONSTRAINT DEFINITIONS

<constraint definition> ' CONSTRAINTS" <constraint list>"'"
<constraint list> :=<constraint dedaaton>I<constraint declaration>(";" <constraint
declaration>) *
<constraint declaration> :=<constraint name> ['{'<set name> '}"]

':='<expressIon><logical binary op> <expression>
I<expression> <logical binary op>.cexpression> <logical binary op><expression>

<constraint name> :=<identifier>[<index tuple>]
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